-
摘要: 多系统萎缩(MSA)是一种快速进展的罕见神经退行性疾病,以自主神经功能障碍、帕金森症、小脑性共济失调和锥体束征的不同组合为主要临床表现。该病起病隐匿、进展快、临床异质性大、早期确诊困难,阻碍了神经保护剂的开发。本文就MSA目前诊断标准、早期诊断标志物和治疗进展进行重点讨论,以期对临床医师临床诊疗提供帮助。Abstract: Multiple system atrophy (MSA) is a rare and rapidly-progressive neurodegenerative disorder, characterized by the combination of dysautonomia, poor levodopa responsive parkinsonism, cerebellar ataxia, and pyramidal tract signs. Insidious onset, clinical heterogeneity and progression of the disease complicate the difficulty of early diagnosis and challenge, the development of neuroprotective drugs. In order to improve the knowledge of diagnosis and treatment of the disease, this paper reviews advances in its diagnostic criteria, biomarkers of early diagnosis and management of the disease.
-
表 1 MSA遗传学标志物汇总
Table 1. Summary of MSA genetic markers
作者 基因 位点 病例数 结果 参考文献 Scholz SW, et al. SNCA rs11931074;rs3857059 413例MSA;3974例HC 增加MSA发病风险 [19] Al-Chalabi A, et al. SNCA rs3822086 239例MSA;617例HC 增加MSA发病风险 [20] Chen Y, et al. SNCA rs3775444、rs3822086和
rs119310741276例PD;885例ALS;
364例MSA;846例HC与MSA发病无关 [21] Perez-Rodriguez D, et al. SNCA 基因拷贝数变异 26例PD;15例MSA;
18例HC体细胞SNCA基因的拷贝数变异与MSA的发病机制有关 [22] The Multiple-System
Atrophy Research
CollaborationCOQ2 V393A 6个MSA家系;
日本:363例MSA;2903例HC
欧洲:223例MSA;315例HC
北美:172例MSA;294例HC增加MSA发病风险 [25] Zhao Q, et al. COQ2 V393A 82例MSA;484例HC;以及meta分析 增加MSA发病风险 [26] Porto KJ, et al. COQ2 V393A 400例MSA;821例HC;以及meta分析 增加MSA发病风险 [27] Wernick AI, et al. GBA p.T408M 167例MSA;834例HC 增加MSA发病风险 [29] Lee K, et al. LRRK2 p.Ile1371Val 1例病理证实的MSA 一例病理证实的MSA患者中有LRRK2基因p.Ile1371Val变异 [30] Sklerov M, et al. GBA N370S;T369M;R496H 17例MSA;82例AD MSA患者携带GBA基因突变位点的频率高于AD患者 [31] Heckman MG, et al. LRRK2 p.M2397T;p.G1624G;
p.N2081D;p.G1624G-
M2397T177例MSA;768例HC LRRK2外显子变异可能与MSA易感性有关 [32] Ogaki K, et al. TREM2 p.R47H 257例MSA;1695例HC 增加MSA发病风险 [33] Cao B, et al. NOD2 rs3135500 431例MSA;441例HC 增加MSA发病风险 [34] Goldman JS, et al. C9orf72 六核苷酸重复序列扩增 1例MSA和ALS共存家系 C9orf72六核苷酸重复序列扩增的患者可表现为MSA、ALS或额颞痴呆 [35] Bonapace G, et al. C9orf72 六核苷酸重复序列扩增 100例MSA C9orf72六核苷酸重复序列扩增可能增加MSA发病风险 [36] Chen X, et al. C9orf72 六核苷酸重复序列扩增 619例PD;381例MSA;
632例HCC9orf72六核苷酸重复序列扩增与MSA和PD无关 [37] Sun Z, et al. C9orf72 六核苷酸重复序列扩增 141例MSA;
184例HCC9orf72六核苷酸重复序列扩增与MSA无关 [38] Schottlaender LV, et al. C9orf72 六核苷酸重复序列扩增 96例MSA;177例PSP;
18例CBDC9orf72六核苷酸重复序列扩增与MSA、PSP和CBD无关 [39] Labbé C, et al. MAPT H2;H1E;H1x;H1J 213例MSA;1312例HC MAPT基因变异与MSA发病风险相关 [40] Sailer A, et al. EDN1
MAPT
FBXO47
ELOVL7rs16872704
rs9303521
rs78523330
rs7715147918例MSA;3864例HC 发现4个可能与MSA发病相关有意义的新变异位点 [41] Gu X, et al. EDN1
MAPT
FBXO47
ELOVL7rs16872704
rs9303521
rs78523330
rs7715147906例MSA;941例HC 4个新变异位点与MSA无关 [42] MSA:多系统萎缩;HC:健康对照;PD:帕金森病;ALS:肌萎缩侧索硬化;AD:阿尔兹海默症;PSP:进行性核上性麻痹;CBD:皮质基底节变性 表 2 MSA对症治疗策略
Table 2. Symptomatic treatment strategies for MSA
症状 治疗方案 共济失调 丁螺环酮;物理治疗 帕金森样症状 左旋多巴;多巴胺受体激动剂;金刚烷胺等 肌张力障碍(眼睑痉挛、颈部前屈等) 肉毒毒素治疗 体位性低血压 增加液体和盐的摄入;穿弹力袜或使用腹部压力带;米多君;氟氢可的松;屈昔多巴等 尿频、尿急、急迫性尿失禁 抗胆碱药在内的解痉药;肉毒毒素治疗 尿潴留 坦索罗辛;哌唑嗪;间歇性自我清洁导尿 快动眼睡眠行为障碍 营造安全的睡眠环境,如安装床边护栏、在地上铺软垫等;氯硝西泮;褪黑素 喘鸣 持续气道正压通气或气管造口术 表 3 MSA药物临床试验总结
Table 3. Summary of clinical trials of MSA drugs
药物名称 机制 试验阶段 试验结果 参考文献或注册号 利福平 抑制α-突触核蛋白聚集 Ⅱ期 对延缓疾病进展无效 [94] 锂剂 抑制α-突触核蛋白聚集 Ⅱ期 因严重副作用试验终止 [95] EGCG(绿茶提取物) 抑制α-突触核蛋白聚集 Ⅲ期 对延缓疾病进展无效 NCT02008721 雷帕霉素 mTOR抑制剂 Ⅱ期 对延缓疾病进展无效 NCT03589976 PBT434 抑制α-突触核蛋白聚集 Ⅱ期 正在进行中 NCT05109091 NPT200-11 抑制α-突触核蛋白错误折叠 Ⅰ期 等待Ⅰb期研究 NCT02606682 Anle138b 调节α-突触核蛋白寡聚化 Ⅰ期 正在进行中 NCT04208152 PD03A 针对α-突触核蛋白的疫苗 Ⅰ期 显示了安全性、耐受性及免疫原性证据 [96] 米诺环素 调节神经炎症 Ⅲ期 对延缓疾病进展无效 NCT00146809 IVIg 调节神经炎症 - 患者的临床评分改善 [97] 利鲁唑 神经保护剂 Ⅲ期 对延缓疾病进展无效 NCT00211224 雷沙吉兰 神经保护剂 Ⅱ期 对延缓疾病进展无效 NCT00977665 氟西汀 神经保护剂 Ⅱ期 对延缓疾病进展无效 NCT01146548 BHV3241(AZD3241) 神经保护剂 Ⅲ期 未达到满意的终点指标 NCT03952806 辅酶Q10 保护线粒体功能 Ⅱ期 正在进行中 NCT01793168 艾塞那肽[227]NMBI 螯合剂和抗氧化剂 Ⅱ期 正在进行中 NCT04184063 KM-819 神经保护剂 Ⅰ期 良好的耐受性 NCT03022799 间充质干细胞 神经保护/营养支持 Ⅰ期 延缓疾病进展 [101] -
[1] Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy[J]. Neurology, 2008, 71: 670-676. doi: 10.1212/01.wnl.0000324625.00404.15 [2] Cao B, Zhang L, Zou Y, et al. Survival analysis and prognostic nomogram model for multiple system atrophy[J]. Parkinsonism Relat Disord, 2018, 54: 68-73. doi: 10.1016/j.parkreldis.2018.04.016 [3] Low PA, Reich SG, Jankovic J, et al. Natural history of multiple system atrophy in the USA: a prospective cohort study[J]. Lancet Neurol, 2015, 14: 710-719. doi: 10.1016/S1474-4422(15)00058-7 [4] Zhang L, Cao B, Hou Y, et al. Fatigue in patients with multiple system atrophy: a prospective cohort study[J]. Neurology, 2022, 98: e73-e82. doi: 10.1212/WNL.0000000000012968 [5] Pérez-Soriano A, Giraldo DM, Ríos J, et al. Progression of motor and non-motor symptoms in multiple system atrophy: a prospective study from the Catalan-MSA Registry[J]. J Parkinsons Dis, 2021, 11: 685-694. doi: 10.3233/JPD-202332 [6] Cao B, Zhao B, Wei QQ, et al. The Global Cognition, Frontal Lobe Dysfunction and Behavior Changes in Chinese Patients with Multiple System Atrophy[J]. PLoS One, 2015, 10 : e0139773. doi: 10.1371/journal.pone.0139773 [7] Koga S, Aoki N, Uitti RJ, et al. When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients[J]. Neurology, 2015, 85: 404-412. doi: 10.1212/WNL.0000000000001807 [8] Stankovic I, Quinn N, Vignatelli L, et al. A critique of the second consensus criteria for multiple system atrophy[J]. Mov Disord, 2019, 34: 975-984. doi: 10.1002/mds.27701 [9] Koga S, Cheshire WP, Tipton PW, et al. Clinical features of autopsy-confirmed multiple system atrophy in the Mayo Clinic Florida brain bank[J]. Parkinsonism Relat Disord, 2021, 89: 155-161. doi: 10.1016/j.parkreldis.2021.07.007 [10] Tandon R, Pradhan S. Autonomic predominant multiple system atrophy in the context of Parkinsonian and cerebellar variants[J]. Clin Neurol Neurosurg, 2015, 130: 110-113. doi: 10.1016/j.clineuro.2014.09.018 [11] Batla A, De Pablo-Fernandez E, Erro R, et al. Young-onset multiple system atrophy: Clinical and pathological features[J]. Mov Disord, 2018, 33: 1099-1107. doi: 10.1002/mds.27450 [12] Batla A, Stamelou M, Mensikova K, et al. Markedly asymmetric presentation in multiple system atrophy[J]. Parkinsonism Relat Disord, 2013, 19: 901-905. doi: 10.1016/j.parkreldis.2013.05.004 [13] Wenning GK, Geser F, Krismer F, et al. The natural history of multiple system atrophy: a prospective European cohort study[J]. Lancet Neurol, 2013, 12: 264-274. doi: 10.1016/S1474-4422(12)70327-7 [14] Stankovic I, Krismer F, Jesic A, et al. Cognitive impairment in multiple system atrophy: a position statement by the Neuropsychology Task Force of the MDS Multiple System Atrophy (MODIMSA) study group[J]. Mov Disord, 2014, 29: 857-867. doi: 10.1002/mds.25880 [15] Koga S, Parks A, Uitti RJ, et al. Profile of cognitive impairment and underlying pathology in multiple system atrophy[J]. Mov Disord, 2017, 32: 405-413. doi: 10.1002/mds.26874 [16] Lee MJ, Shin JH, Seoung JK, et al. Cognitive impairments associated with morphological changes in cortical and subcortical structures in multiple system atrophy of the cerebellar type[J]. Eur J Neurol, 2016, 23: 92-100. doi: 10.1111/ene.12796 [17] Kim HJ, Jeon BS, Kim YE, et al. Clinical and imaging characteristics of dementia in multiple system atrophy[J]. Parkinsonism Relat Disord, 2013, 19: 617-621. doi: 10.1016/j.parkreldis.2013.02.012 [18] Katzeff JS, Phan K, Purushothuman S, et al. Cross-examining candidate genes implicated in multiple system atrophy[J]. Acta Neuropathol Commun, 2019, 7: 117. doi: 10.1186/s40478-019-0769-4 [19] Scholz SW, Houlden H, Schulte C, et al. SNCA variants are associated with increased risk for multiple system atrophy[J]. Ann Neurol, 2009, 65: 610-614. doi: 10.1002/ana.21685 [20] Al-Chalabi A, Dürr A, Wood NW, et al. Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy[J]. PLoS One, 2009, 4: e7114. doi: 10.1371/journal.pone.0007114 [21] Chen Y, Wei QQ, Ou R, et al. Genetic variants of SNCA are associated with susceptibility to Parkinson's Disease but not amyotrophic lateral sclerosis or multiple system atrophy in a Chinese population[J]. PLoS One, 2015, 10: e0133776. doi: 10.1371/journal.pone.0133776 [22] Perez-Rodriguez D, Kalyva M, Leija-Salazar M, et al. Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing[J]. Acta Neuropathol Commun, 2019, 7: 219. doi: 10.1186/s40478-019-0873-5 [23] Hsiao JT, Purushothuman S, Jensen P H, et al. Reductions in COQ2 expression relate to reduced ATP levels in multiple system atrophy brain[J]. Front Neurosci, 2019, 13: 1187. doi: 10.3389/fnins.2019.01187 [24] Barca E, Kleiner G, Tang G, et al. Decreased coenzyme Q10 levels in multiple system atrophy cerebellum[J]. J Neuropathol Exp Neurol, 2016, 75 : 663-672. doi: 10.1093/jnen/nlw037 [25] Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy[J]. N Engl J Med, 2013, 369: 233-244. doi: 10.1056/NEJMoa1212115 [26] Zhao Q, Yang X, Tian S, et al. Association of the COQ2 V393A variant with risk of multiple system atrophy in East Asians: a case-control study and meta-analysis of the literature[J]. Neurol Sci, 2016, 37: 423-430. doi: 10.1007/s10072-015-2414-8 [27] Porto KJ, Hirano M, Mitsui J, et al. COQ2 V393A confers high risk susceptibility for multiple system atrophy in East Asian population[J]. J Neurol Sci, 2021, 429: 117623. doi: 10.1016/j.jns.2021.117623 [28] Pang SY, Lo RCN, Ho PW, et al. LRRK2, GBA and their interaction in the regulation of autophagy: implications on therapeutics in Parkinson's disease[J]. Transl Neurodegener, 2022, 11: 5. doi: 10.1186/s40035-022-00281-6 [29] Wernick AI, Walton RL, Koga S, et al. GBA variation and susceptibility to multiple system atrophy[J]. Parkinsonism Relat Disord, 2020, 77: 64-69. doi: 10.1016/j.parkreldis.2020.06.007 [30] Lee K, Nguyen KD, Sun C, et al. LRRK2 p. Ile1371Val mutation in a case with neuropathologically confirmed multi-system atrophy[J]. J Parkinsons Dis, 2018, 8: 93-100. doi: 10.3233/JPD-171237 [31] Sklerov M, Kang UJ, Liong C, et al. Frequency of GBA variants in autopsy-proven multiple system atrophy[J]. Mov Disord Clin Pract, 2017, 4: 574-581. doi: 10.1002/mdc3.12481 [32] Heckman MG, Schottlaender L, Soto-Ortolaza AI, et al. LRRK2 exonic variants and risk of multiple system atrophy[J]. Neurology, 2014, 83: 2256-2261. doi: 10.1212/WNL.0000000000001078 [33] Ogaki K, Heckman MG, Koga S, et al. Association study between multiple system atrophy and TREM2 p. R47H[J]. Neurol Genet, 2018, 4: e257. doi: 10.1212/NXG.0000000000000257 [34] Cao B, Chen Y, Zhou Q, et al. Functional variant rs3135500 in NOD2 increases the risk of multiple system atrophy in a Chinese population[J]. Front Aging Neurosci, 2018, 10: 150. doi: 10.3389/fnagi.2018.00150 [35] Goldman JS, Quinzii C, Dunning-Broadbent J, et al. Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72[J]. JAMA Neurol, 2014, 71: 771-774. doi: 10.1001/jamaneurol.2013.5762 [36] Bonapace G, Gagliardi M, Procopio R, et al. Multiple system atrophy and C9orf72 hexanucleotide repeat expansions in a cohort of Italian patients[J]. Neurobiol Aging, 2021, 112: 12-15. https://pubmed.ncbi.nlm.nih.gov/35007998/ [37] Chen X, Chen Y, Wei Q, et al. C9ORF72 repeat expansions in Chinese patients with Parkinson's disease and multiple system atrophy[J]. J Neural Transm (Vienna), 2016, 123 : 1341-1345. doi: 10.1007/s00702-016-1598-2 [38] Sun Z, Jiang H, Jiao B, et al. C9orf72 hexanucleotide expansion analysis in Chinese patients with multiple system atrophy[J]. Parkinsonism Relat Disord, 2015, 21: 811-812. doi: 10.1016/j.parkreldis.2015.04.008 [39] Schottlaender LV, Polke JM, Ling H, et al. Analysis of C9orf72 repeat expansions in a large series of clinically and pathologically diagnosed cases with atypical parkinsonism[J]. Neurobiol Aging, 2015, 36: 1221. e1-e6. https://pubmed.ncbi.nlm.nih.gov/25308964/ [40] Labbé C, Heckman MG, Lorenzo-Betancor O, et al. MAPT haplotype diversity in multiple system atrophy[J]. Parkinsonism Relat Disord, 2016, 30: 40-45. doi: 10.1016/j.parkreldis.2016.06.010 [41] Sailer A, Scholz SW, Nalls MA, et al. A genome-wide association study in multiple system atrophy[J]. Neurology, 2016, 87: 1591-1598. doi: 10.1212/WNL.0000000000003221 [42] Gu X, Chen Y, Zhou Q, et al. Analysis of GWAS-linked variants in multiple system atrophy[J]. Neurobiol Aging, 2018, 67: 201. e1-201. e4. https://www.sciencedirect.com/science/article/pii/S0197458018300964 [43] Carré G, Dietemann JL, Gebus O, et al. Brain MRI of multiple system atrophy of cerebellar type: a prospective study with implications for diagnosis criteria[J]. J Neurol, 2020, 267: 1269-1277. doi: 10.1007/s00415-020-09702-w [44] Chelban V, Bocchetta M, Hassanein S, et al. An update on advances in magnetic resonance imaging of multiple system atrophy[J]. J Neurol, 2019, 266: 1036-1045. doi: 10.1007/s00415-018-9121-3 [45] Krismer F, Seppi K, Wenning G K, et al. Abnormalities on structural MRI associate with faster disease progression in multiple system atrophy[J]. Parkinsonism Relat Disord, 2019, 58: 23-27. doi: 10.1016/j.parkreldis.2018.08.004 [46] Zhao P, Zhang B, Gao S, et al. Clinical features, MRI, and 18F-FDG-PET in differential diagnosis of Parkinson disease from multiple system atrophy[J]. Brain Behav, 2020, 10: e01827. https://pubmed.ncbi.nlm.nih.gov/32940411/ [47] Sun X, Liu F, Liu Q, et al. Quantitative Research of (11)C-CFT and (18)F-FDG PET in Parkinson's Disease: A Pilot Study With NeuroQ Software[J]. Front Neurosci, 2019, 13: 299. doi: 10.3389/fnins.2019.00299 [48] Bu LL, Liu FT, Jiang CF, et al. Patterns of dopamine transporter imaging in subtypes of multiple system atrophy[J]. Acta Neurol Scand, 2018, 138: 170-176. doi: 10.1111/ane.12932 [49] Thobois S, Prange S, Scheiber C, et al. What a neurolo-gist should know about PET and SPECT functional imaging for parkinsonism: A practical perspective[J]. Parkinsonism Relat Disord, 2019, 59: 93-100. doi: 10.1016/j.parkreldis.2018.08.016 [50] Alves Do Rego C, Namer IJ, Marcel C, et al. Prospective study of relevance of (123)I-MIBG myocardial scintigraphy and clonidine GH test to distinguish Parkinson's disease and multiple system atrophy[J]. J Neurol, 2018, 265: 2033-2039. doi: 10.1007/s00415-018-8941-5 [51] Cong S, Xiang C, Wang H, et al. Diagnostic utility of fluid biomarkers in multiple system atrophy: a systematic review and meta-analysis[J]. J Neurol, 2021, 268: 2703-2712. doi: 10.1007/s00415-020-09781-9 [52] Yang F, Li WJ, Huang XS. Alpha-synuclein levels in patients with multiple system atrophy: a meta-analysis[J]. Int J Neurosci, 2018, 128: 477-486. doi: 10.1080/00207454.2017.1394851 [53] Jiang C, Hopfner F, Berg D, et al. Validation of α-Synuclein in L1CAM-Immunocaptured Exosomes as a Biomarker for the Stratification of Parkinsonian Syndromes[J]. Mov Disord, 2021, 36: 2663-2669. doi: 10.1002/mds.28591 [54] Jiang C, Hopfner F, Katsikoudi A, et al. Serum neuronal exosomes predict and differentiate Parkinson's disease from atypical parkinsonism[J]. J Neurol Neurosurg Psychiatry, 2020, 91: 720-729. doi: 10.1136/jnnp-2019-322588 [55] Dutta S, Hornung S, Kruayatidee A, et al. α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson's disease from multiple system atrophy[J]. Acta Neuropathol, 2021, 142: 495-511. doi: 10.1007/s00401-021-02324-0 [56] Yuan A, Rao M V, Veeranna, et al. Neurofilaments and neurofilament proteins in health and disease[J]. Cold Spring Harb Perspect Biol, 2017, 9: a018309. doi: 10.1101/cshperspect.a018309 [57] Marques TM, Van Rumund A, Oeckl P, et al. Serum NFL discriminates Parkinson disease from atypical parkinsonisms[J]. Neurology, 2019, 92: e1479-e1486. doi: 10.1212/WNL.0000000000007179 [58] Hansson O, Janelidze S, Hall S, et al. Blood-based NfL: A biomarker for differential diagnosis of parkinsonian disorder[J]. Neurology, 2017, 88: 930-937. doi: 10.1212/WNL.0000000000003680 [59] Zhang L, Cao B, Hou Y, et al. Neurofilament light chain predicts disease severity and progression in multiple system atrophy[J]. Mov Disord, 2022, 37: 421-426. doi: 10.1002/mds.28847 [60] Xie D, Feng L, Huang H, et al. Cerebrospinal fluid biomarkers in multiple system atrophy relative to Parkinson's Disease: A Meta-Analysis[J]. Behav Neurol, 2021, 2021: 5559383. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188602/ [61] Constantinescu R, Rosengren L, Eriksson B, et al. Cerebrospinal fluid neurofilament light and tau protein as mortality biomarkers in parkinsonism[J]. Acta Neurol Scand, 2019, 140: 147-156. doi: 10.1111/ane.13116 [62] Zhang X, Liu DS, An CY, et al. Association between serum uric acid level and multiple system atrophy: A meta-analysis[J]. Clin Neurol Neurosurg, 2018, 169: 16-20. doi: 10.1016/j.clineuro.2018.03.023 [63] Fukae J, Fujioka S, Yanamoto S, et al. Serum uric acid level is linked to the disease progression rate in male patients with multiple system atrophy[J]. Clin Neurol Neurosurg, 2017, 158: 15-19. doi: 10.1016/j.clineuro.2017.04.002 [64] Cao B, Wei QQ, Ou R, et al. Association of serum uric acid level with cognitive function among patients with multiple system atrophy[J]. J Neurol Sci, 2015, 359: 363-366. doi: 10.1016/j.jns.2015.11.025 [65] Jung Lee J, Han Yoon J, Jin Kim S, et al. Inosine 5'-Monophosphate to Raise Serum Uric Acid Level in Multiple System Atrophy (IMPROVE-MSA study)[J]. Clin Pharmacol Ther, 2021, 109: 1274-1281. doi: 10.1002/cpt.2082 [66] Vacchi E, Senese C, Chiaro G, et al. Alpha-synuclein oligomers and small nerve fiber pathology in skin are potential biomarkers of Parkinson's disease[J]. NPJ Parkinsons Dis, 2021, 7 : 119. doi: 10.1038/s41531-021-00262-y [67] Kuzkina A, Schulmeyer L, Monoranu CM, et al. The aggregation state of α-synuclein deposits in dermal nerve fibers of patients with Parkinson's disease resembles that in the brain[J]. Parkinsonism Relat Disord, 2019, 64: 66-72. doi: 10.1016/j.parkreldis.2019.03.003 [68] Brumberg J, Kuzkina A, Lapa C, et al. Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy[J]. Neurobiol Dis, 2021, 153: 105332. doi: 10.1016/j.nbd.2021.105332 [69] Donadio V, Incensi A, Rizzo G, et al. Skin biopsy may help to distinguish multiple system atrophy-Parkinsonism from Parkinson's Disease with orthostatic hypotension[J]. Mov Disord, 2020, 35: 1649-1657. doi: 10.1002/mds.28126 [70] Donadio V, Incensi A, El-Agnaf O, et al. Skin α-synuclein deposits differ in clinical variants of synucleinopathy: an in vivo study[J]. Sci Rep, 2018, 8: 14246. doi: 10.1038/s41598-018-32588-8 [71] Giannoccaro MP, Donadio V, Giannini G, et al. Comparison of 123I-MIBG scintigraphy and phosphorylated α-synuclein skin deposits in synucleinopathies[J]. Parkinsonism Relat Disord, 2020, 81: 48-53. doi: 10.1016/j.parkreldis.2020.10.016 [72] Paciotti S, Bellomo G, Gatticchi L, et al. Are we ready for detecting α-Synuclein prone to aggregation in patients? The case of "Protein-Misfolding Cyclic Amplification" and "Real-Time Quaking-Induced Conversion" as diagnostic tools[J]. Front Neurol, 2018, 9: 415. doi: 10.3389/fneur.2018.00415 [73] Poggiolini I, Gupta V, Lawton M, et al. Diagnostic value of cerebrospinal fluid alpha-synuclein seed quantification in synucleinopathies[J]. Brain, 2022, 145: 584-595. doi: 10.1093/brain/awab431 [74] Shahnawaz M, Mukherjee A, Pritzkow S, et al. Discriminat-ing α-synuclein strains in Parkinson's disease and multiple system atrophy[J]. Nature, 2020, 578: 273-277. doi: 10.1038/s41586-020-1984-7 [75] De Luca CMG, Elia AE, Portaleone SM, et al. Efficient RT-QuIC seeding activity for α-synuclein in olfactory mucosa samples of patients with Parkinson's disease and multiple system atrophy[J]. Transl Neurodegener, 2019, 8: 24. doi: 10.1186/s40035-019-0164-x [76] Bargar C, De Luca CMG, Devigili G, et al. Discrimina-tion of MSA-P and MSA-C by RT-QuIC analysis of olfactory mucosa: the first assessment of assay reproducibility between two specialized laboratories[J]. Mol Neurodegener, 2021, 16: 82. doi: 10.1186/s13024-021-00491-y [77] Luan M, Sun Y, Chen J, et al. Diagnostic value of salivary real-time quaking-induced conversion in Parkinson's Disease and multiple system atrophy[J]. Mov Disord, 2022[Epub ahead of print]. [78] Singer W, Schmeichel AM, Shahnawaz M, et al. Alpha-Synuclein oligomers and neurofilament light chain predict phenoconversion of pure autonomic failure[J]. Ann Neurol, 2021, 89: 1212-1220. doi: 10.1002/ana.26089 [79] Quadalti C, Calandra-Buonaura G, Baiardi S, et al. Neurofilament light chain and α-synuclein RT-QuIC as differ-ential diagnostic biomarkers in parkinsonisms and related syndromes[J]. NPJ Parkinsons Dis, 2021, 7: 93. doi: 10.1038/s41531-021-00232-4 [80] Martinez-Valbuena I, Visanji NP, Olszewska DA, et al. Combining skin α-Synuclein real-time quaking-induced conversion and circulating neurofilament light chain to distinguish multiple system atrophy and Parkinson's Disease[J]. Mov Disord, 2022, 37: 648-650. doi: 10.1002/mds.28912 [81] Heo JH, Lee ST, Chu K, et al. The efficacy of combined estrogen and buspirone treatment in olivopontocerebellar atrophy[J]. J Neurol Sci, 2008, 271: 87-90. doi: 10.1016/j.jns.2008.03.016 [82] Ilg W, Bastian AJ, Boesch S, et al. Consensus paper: management of degenerative cerebellar disorders[J]. Cerebellum, 2014, 13: 248-268. doi: 10.1007/s12311-013-0531-6 [83] I lg W, Synofzik M, Brötz D, et al. Intensive coordinative training improves motor performance in degenerative cerebellar disease[J]. Neurology, 2009, 73: 1823-1830. doi: 10.1212/WNL.0b013e3181c33adf [84] Burns MR, Mcfarland NR. Current management and emerging therapies in multiple system atrophy[J]. Neurotherapeutics, 2020, 17: 1582-1602. doi: 10.1007/s13311-020-00890-x [85] Meissner WG, Laurencin C, Tranchant C, et al. Outcome of deep brain stimulation in slowly progressive multiple system atrophy: A clinico-pathological series and review of the literature[J]. Parkinsonism Relat Disord, 2016, 24: 69-75. doi: 10.1016/j.parkreldis.2016.01.005 [86] Zhu XY, Pan TH, Ondo WG, et al. Effects of deep brain stimulation in relatively young-onset multiple system atrophy Parkinsonism[J]. J Neurol Sci, 2014, 342: 42-44. doi: 10.1016/j.jns.2014.04.022 [87] Rohrer G, Hoglinger GU, Levin J. Symptomatic therapy of multiple system atrophy[J]. Auton Neurosci, 2018, 211: 26-30. doi: 10.1016/j.autneu.2017.10.006 [88] Flabeau O, Meissner WG, Tison F. Multiple system atrophy: current and future approaches to management[J]. Ther Adv Neurol Disord, 2010, 3: 249-263. doi: 10.1177/1756285610375328 [89] Ogawa T, Sakakibara R, Kuno S, et al. Prevalence and treatment of LUTS in patients with Parkinson disease or multiple system atrophy[J]. Nat Rev Urol, 2017, 14: 79-89. doi: 10.1038/nrurol.2016.254 [90] Fowler CJ, O'malley KJ. Investigation and management of neurogenic bladder dysfunction[J]. J Neurol Neurosurg Psychiatry, 2003, 74: iv27-iv31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1765643/ [91] St Louis EK, Boeve AR, Boeve BF. REM sleep behavior disorder in Parkinson's Disease and other synucleinopathies[J]. Mov Disord, 2017, 32: 645-658. doi: 10.1002/mds.27018 [92] Cortelli P, Calandra-Buonaura G, Benarroch EE, et al. Stridor in multiple system atrophy: Consensus statement on diagnosis, prognosis, and treatment[J]. Neurology, 2019, 93: 630-639. doi: 10.1212/WNL.0000000000008208 [93] Ubhi K, Rockenstein E, Mante M, et al. Rifampicin reduces alpha-synuclein in a transgenic mouse model of multiple system atrophy[J]. Neuroreport, 2008, 19: 1271-1276. doi: 10.1097/WNR.0b013e32830b3661 [94] Low PA, Robertson D, Gilman S, et al. Efficacy and safety of rifampicin for multiple system atrophy: a randomised, double-blind, placebo-controlled trial[J]. Lancet Neurol, 2014, 13 : 268-275. doi: 10.1016/S1474-4422(13)70301-6 [95] Sacca F, Marsili A, Quarantelli M, et al. A randomized clinical trial of lithium in multiple system atrophy[J]. J Neurol, 2013, 260: 458-461. doi: 10.1007/s00415-012-6655-7 [96] Meissner WG, Traon A P, Foubert-Samier A, et al. A phase 1 randomized trial of specific active α-Synuclein immunotherapies PD01A and PD03A in multiple system atrophy[J]. Mov Disord, 2020, 35: 1957-1965. doi: 10.1002/mds.28218 [97] Novak P, Williams A, Ravin P, et al. Treatment of multiple system atrophy using intravenous immunoglobulin[J]. BMC Neurol, 2012, 12: 131. doi: 10.1186/1471-2377-12-131 [98] Ubhi K, Rockenstein E, Mante M, et al. Neurode-generation in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors[J]. J Neurosci, 2010, 30: 6236-6246. doi: 10.1523/JNEUROSCI.0567-10.2010 [99] Lee PH, Kim JW, Bang OY, et al. Autologous mesen-chymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy[J]. Clin Pharmacol Ther, 2008, 83: 723-730. doi: 10.1038/sj.clpt.6100386 [100] Lee PH, Lee JE, Kim HS, et al. A randomized trial of mesenchymal stem cells in multiple system atrophy[J]. Ann Neurol, 2012, 72: 32-40. doi: 10.1002/ana.23612 [101] Chung SJ, Lee TY, Lee YH, et al. Phase I trial of intra-arterial administration of autologous bone marrow-derived mesenchymal stem cells in patients with multiple system atrophy[J]. Stem Cells Int, 2021, 2021: 9886877. https://pubmed.ncbi.nlm.nih.gov/34712335/ -

计量
- 文章访问数: 399
- HTML全文浏览量: 185
- PDF下载量: 111
- 被引次数: 0