留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多系统萎缩的诊治进展

张灵语 商慧芳

张灵语, 商慧芳. 多系统萎缩的诊治进展[J]. 罕见病研究, 2022, 1(2): 206-216. doi: 10.12376/j.issn.2097-0501.2022.02.016
引用本文: 张灵语, 商慧芳. 多系统萎缩的诊治进展[J]. 罕见病研究, 2022, 1(2): 206-216. doi: 10.12376/j.issn.2097-0501.2022.02.016
ZHANG Lingyu, SHANG Huifang. Advances in the Diagnosis and Treatment of Multiple System Atrophy[J]. Journal of Rare Diseases, 2022, 1(2): 206-216. doi: 10.12376/j.issn.2097-0501.2022.02.016
Citation: ZHANG Lingyu, SHANG Huifang. Advances in the Diagnosis and Treatment of Multiple System Atrophy[J]. Journal of Rare Diseases, 2022, 1(2): 206-216. doi: 10.12376/j.issn.2097-0501.2022.02.016

多系统萎缩的诊治进展

doi: 10.12376/j.issn.2097-0501.2022.02.016
基金项目: 

四川大学华西医院学科卓越发展1·3·5工程临床研究孵化项目 2022HXFH023

详细信息
    通信作者:

    商慧芳,E-mail: hfshang2002@163.com

  • 中图分类号: R74

Advances in the Diagnosis and Treatment of Multiple System Atrophy

Funding: 

1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University 2022HXFH023

More Information
  • 摘要: 多系统萎缩(MSA)是一种快速进展的罕见神经退行性疾病,以自主神经功能障碍、帕金森症、小脑性共济失调和锥体束征的不同组合为主要临床表现。该病起病隐匿、进展快、临床异质性大、早期确诊困难,阻碍了神经保护剂的开发。本文就MSA目前诊断标准、早期诊断标志物和治疗进展进行重点讨论,以期对临床医师临床诊疗提供帮助。

     

  • 表  1  MSA遗传学标志物汇总

    Table  1.   Summary of MSA genetic markers

    作者 基因 位点 病例数 结果 参考文献
    Scholz SW, et al. SNCA rs11931074;rs3857059 413例MSA;3974例HC 增加MSA发病风险 [19]
    Al-Chalabi A, et al. SNCA rs3822086 239例MSA;617例HC 增加MSA发病风险 [20]
    Chen Y, et al. SNCA rs3775444、rs3822086和
    rs11931074
    1276例PD;885例ALS;
    364例MSA;846例HC
    与MSA发病无关 [21]
    Perez-Rodriguez D, et al. SNCA 基因拷贝数变异 26例PD;15例MSA;
    18例HC
    体细胞SNCA基因的拷贝数变异与MSA的发病机制有关 [22]
    The Multiple-System
    Atrophy Research
    Collaboration
    COQ2 V393A 6个MSA家系;
    日本:363例MSA;2903例HC
    欧洲:223例MSA;315例HC
    北美:172例MSA;294例HC
    增加MSA发病风险 [25]
    Zhao Q, et al. COQ2 V393A 82例MSA;484例HC;以及meta分析 增加MSA发病风险 [26]
    Porto KJ, et al. COQ2 V393A 400例MSA;821例HC;以及meta分析 增加MSA发病风险 [27]
    Wernick AI, et al. GBA p.T408M 167例MSA;834例HC 增加MSA发病风险 [29]
    Lee K, et al. LRRK2 p.Ile1371Val 1例病理证实的MSA 一例病理证实的MSA患者中有LRRK2基因p.Ile1371Val变异 [30]
    Sklerov M, et al. GBA N370S;T369M;R496H 17例MSA;82例AD MSA患者携带GBA基因突变位点的频率高于AD患者 [31]
    Heckman MG, et al. LRRK2 p.M2397T;p.G1624G;
    p.N2081D;p.G1624G-
    M2397T
    177例MSA;768例HC LRRK2外显子变异可能与MSA易感性有关 [32]
    Ogaki K, et al. TREM2 p.R47H 257例MSA;1695例HC 增加MSA发病风险 [33]
    Cao B, et al. NOD2 rs3135500 431例MSA;441例HC 增加MSA发病风险 [34]
    Goldman JS, et al. C9orf72 六核苷酸重复序列扩增 1例MSA和ALS共存家系 C9orf72六核苷酸重复序列扩增的患者可表现为MSA、ALS或额颞痴呆 [35]
    Bonapace G, et al. C9orf72 六核苷酸重复序列扩增 100例MSA C9orf72六核苷酸重复序列扩增可能增加MSA发病风险 [36]
    Chen X, et al. C9orf72 六核苷酸重复序列扩增 619例PD;381例MSA;
    632例HC
    C9orf72六核苷酸重复序列扩增与MSA和PD无关 [37]
    Sun Z, et al. C9orf72 六核苷酸重复序列扩增 141例MSA;
    184例HC
    C9orf72六核苷酸重复序列扩增与MSA无关 [38]
    Schottlaender LV, et al. C9orf72 六核苷酸重复序列扩增 96例MSA;177例PSP;
    18例CBD
    C9orf72六核苷酸重复序列扩增与MSA、PSP和CBD无关 [39]
    Labbé C, et al. MAPT H2;H1E;H1x;H1J 213例MSA;1312例HC MAPT基因变异与MSA发病风险相关 [40]
    Sailer A, et al. EDN1
    MAPT
    FBXO47
    ELOVL7
    rs16872704
    rs9303521
    rs78523330
    rs7715147
    918例MSA;3864例HC 发现4个可能与MSA发病相关有意义的新变异位点 [41]
    Gu X, et al. EDN1
    MAPT
    FBXO47
    ELOVL7
    rs16872704
    rs9303521
    rs78523330
    rs7715147
    906例MSA;941例HC 4个新变异位点与MSA无关 [42]
    MSA:多系统萎缩;HC:健康对照;PD:帕金森病;ALS:肌萎缩侧索硬化;AD:阿尔兹海默症;PSP:进行性核上性麻痹;CBD:皮质基底节变性
    下载: 导出CSV

    表  2  MSA对症治疗策略

    Table  2.   Symptomatic treatment strategies for MSA

    症状 治疗方案
    共济失调 丁螺环酮;物理治疗
    帕金森样症状 左旋多巴;多巴胺受体激动剂;金刚烷胺等
    肌张力障碍(眼睑痉挛、颈部前屈等) 肉毒毒素治疗
    体位性低血压 增加液体和盐的摄入;穿弹力袜或使用腹部压力带;米多君;氟氢可的松;屈昔多巴等
    尿频、尿急、急迫性尿失禁 抗胆碱药在内的解痉药;肉毒毒素治疗
    尿潴留 坦索罗辛;哌唑嗪;间歇性自我清洁导尿
    快动眼睡眠行为障碍 营造安全的睡眠环境,如安装床边护栏、在地上铺软垫等;氯硝西泮;褪黑素
    喘鸣 持续气道正压通气或气管造口术
    下载: 导出CSV

    表  3  MSA药物临床试验总结

    Table  3.   Summary of clinical trials of MSA drugs

    药物名称
    机制 试验阶段 试验结果 参考文献或注册号
    利福平 抑制α-突触核蛋白聚集 Ⅱ期 对延缓疾病进展无效 [94]
    锂剂 抑制α-突触核蛋白聚集 Ⅱ期 因严重副作用试验终止 [95]
    EGCG(绿茶提取物) 抑制α-突触核蛋白聚集 Ⅲ期 对延缓疾病进展无效 NCT02008721
    雷帕霉素 mTOR抑制剂 Ⅱ期 对延缓疾病进展无效 NCT03589976
    PBT434 抑制α-突触核蛋白聚集 Ⅱ期 正在进行中 NCT05109091
    NPT200-11 抑制α-突触核蛋白错误折叠 Ⅰ期 等待Ⅰb期研究 NCT02606682
    Anle138b 调节α-突触核蛋白寡聚化 Ⅰ期 正在进行中 NCT04208152
    PD03A 针对α-突触核蛋白的疫苗 Ⅰ期 显示了安全性、耐受性及免疫原性证据 [96]
    米诺环素 调节神经炎症 Ⅲ期 对延缓疾病进展无效 NCT00146809
    IVIg 调节神经炎症 - 患者的临床评分改善 [97]
    利鲁唑 神经保护剂 Ⅲ期 对延缓疾病进展无效 NCT00211224
    雷沙吉兰 神经保护剂 Ⅱ期 对延缓疾病进展无效 NCT00977665
    氟西汀 神经保护剂 Ⅱ期 对延缓疾病进展无效 NCT01146548
    BHV3241(AZD3241) 神经保护剂 Ⅲ期 未达到满意的终点指标 NCT03952806
    辅酶Q10 保护线粒体功能 Ⅱ期 正在进行中 NCT01793168
    艾塞那肽[227]NMBI 螯合剂和抗氧化剂 Ⅱ期 正在进行中 NCT04184063
    KM-819 神经保护剂 Ⅰ期 良好的耐受性 NCT03022799
    间充质干细胞 神经保护/营养支持 Ⅰ期 延缓疾病进展 [101]
    下载: 导出CSV
  • [1] Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy[J]. Neurology, 2008, 71: 670-676. doi: 10.1212/01.wnl.0000324625.00404.15
    [2] Cao B, Zhang L, Zou Y, et al. Survival analysis and prognostic nomogram model for multiple system atrophy[J]. Parkinsonism Relat Disord, 2018, 54: 68-73. doi: 10.1016/j.parkreldis.2018.04.016
    [3] Low PA, Reich SG, Jankovic J, et al. Natural history of multiple system atrophy in the USA: a prospective cohort study[J]. Lancet Neurol, 2015, 14: 710-719. doi: 10.1016/S1474-4422(15)00058-7
    [4] Zhang L, Cao B, Hou Y, et al. Fatigue in patients with multiple system atrophy: a prospective cohort study[J]. Neurology, 2022, 98: e73-e82. doi: 10.1212/WNL.0000000000012968
    [5] Pérez-Soriano A, Giraldo DM, Ríos J, et al. Progression of motor and non-motor symptoms in multiple system atrophy: a prospective study from the Catalan-MSA Registry[J]. J Parkinsons Dis, 2021, 11: 685-694. doi: 10.3233/JPD-202332
    [6] Cao B, Zhao B, Wei QQ, et al. The Global Cognition, Frontal Lobe Dysfunction and Behavior Changes in Chinese Patients with Multiple System Atrophy[J]. PLoS One, 2015, 10 : e0139773. doi: 10.1371/journal.pone.0139773
    [7] Koga S, Aoki N, Uitti RJ, et al. When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients[J]. Neurology, 2015, 85: 404-412. doi: 10.1212/WNL.0000000000001807
    [8] Stankovic I, Quinn N, Vignatelli L, et al. A critique of the second consensus criteria for multiple system atrophy[J]. Mov Disord, 2019, 34: 975-984. doi: 10.1002/mds.27701
    [9] Koga S, Cheshire WP, Tipton PW, et al. Clinical features of autopsy-confirmed multiple system atrophy in the Mayo Clinic Florida brain bank[J]. Parkinsonism Relat Disord, 2021, 89: 155-161. doi: 10.1016/j.parkreldis.2021.07.007
    [10] Tandon R, Pradhan S. Autonomic predominant multiple system atrophy in the context of Parkinsonian and cerebellar variants[J]. Clin Neurol Neurosurg, 2015, 130: 110-113. doi: 10.1016/j.clineuro.2014.09.018
    [11] Batla A, De Pablo-Fernandez E, Erro R, et al. Young-onset multiple system atrophy: Clinical and pathological features[J]. Mov Disord, 2018, 33: 1099-1107. doi: 10.1002/mds.27450
    [12] Batla A, Stamelou M, Mensikova K, et al. Markedly asymmetric presentation in multiple system atrophy[J]. Parkinsonism Relat Disord, 2013, 19: 901-905. doi: 10.1016/j.parkreldis.2013.05.004
    [13] Wenning GK, Geser F, Krismer F, et al. The natural history of multiple system atrophy: a prospective European cohort study[J]. Lancet Neurol, 2013, 12: 264-274. doi: 10.1016/S1474-4422(12)70327-7
    [14] Stankovic I, Krismer F, Jesic A, et al. Cognitive impairment in multiple system atrophy: a position statement by the Neuropsychology Task Force of the MDS Multiple System Atrophy (MODIMSA) study group[J]. Mov Disord, 2014, 29: 857-867. doi: 10.1002/mds.25880
    [15] Koga S, Parks A, Uitti RJ, et al. Profile of cognitive impairment and underlying pathology in multiple system atrophy[J]. Mov Disord, 2017, 32: 405-413. doi: 10.1002/mds.26874
    [16] Lee MJ, Shin JH, Seoung JK, et al. Cognitive impairments associated with morphological changes in cortical and subcortical structures in multiple system atrophy of the cerebellar type[J]. Eur J Neurol, 2016, 23: 92-100. doi: 10.1111/ene.12796
    [17] Kim HJ, Jeon BS, Kim YE, et al. Clinical and imaging characteristics of dementia in multiple system atrophy[J]. Parkinsonism Relat Disord, 2013, 19: 617-621. doi: 10.1016/j.parkreldis.2013.02.012
    [18] Katzeff JS, Phan K, Purushothuman S, et al. Cross-examining candidate genes implicated in multiple system atrophy[J]. Acta Neuropathol Commun, 2019, 7: 117. doi: 10.1186/s40478-019-0769-4
    [19] Scholz SW, Houlden H, Schulte C, et al. SNCA variants are associated with increased risk for multiple system atrophy[J]. Ann Neurol, 2009, 65: 610-614. doi: 10.1002/ana.21685
    [20] Al-Chalabi A, Dürr A, Wood NW, et al. Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy[J]. PLoS One, 2009, 4: e7114. doi: 10.1371/journal.pone.0007114
    [21] Chen Y, Wei QQ, Ou R, et al. Genetic variants of SNCA are associated with susceptibility to Parkinson's Disease but not amyotrophic lateral sclerosis or multiple system atrophy in a Chinese population[J]. PLoS One, 2015, 10: e0133776. doi: 10.1371/journal.pone.0133776
    [22] Perez-Rodriguez D, Kalyva M, Leija-Salazar M, et al. Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing[J]. Acta Neuropathol Commun, 2019, 7: 219. doi: 10.1186/s40478-019-0873-5
    [23] Hsiao JT, Purushothuman S, Jensen P H, et al. Reductions in COQ2 expression relate to reduced ATP levels in multiple system atrophy brain[J]. Front Neurosci, 2019, 13: 1187. doi: 10.3389/fnins.2019.01187
    [24] Barca E, Kleiner G, Tang G, et al. Decreased coenzyme Q10 levels in multiple system atrophy cerebellum[J]. J Neuropathol Exp Neurol, 2016, 75 : 663-672. doi: 10.1093/jnen/nlw037
    [25] Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy[J]. N Engl J Med, 2013, 369: 233-244. doi: 10.1056/NEJMoa1212115
    [26] Zhao Q, Yang X, Tian S, et al. Association of the COQ2 V393A variant with risk of multiple system atrophy in East Asians: a case-control study and meta-analysis of the literature[J]. Neurol Sci, 2016, 37: 423-430. doi: 10.1007/s10072-015-2414-8
    [27] Porto KJ, Hirano M, Mitsui J, et al. COQ2 V393A confers high risk susceptibility for multiple system atrophy in East Asian population[J]. J Neurol Sci, 2021, 429: 117623. doi: 10.1016/j.jns.2021.117623
    [28] Pang SY, Lo RCN, Ho PW, et al. LRRK2, GBA and their interaction in the regulation of autophagy: implications on therapeutics in Parkinson's disease[J]. Transl Neurodegener, 2022, 11: 5. doi: 10.1186/s40035-022-00281-6
    [29] Wernick AI, Walton RL, Koga S, et al. GBA variation and susceptibility to multiple system atrophy[J]. Parkinsonism Relat Disord, 2020, 77: 64-69. doi: 10.1016/j.parkreldis.2020.06.007
    [30] Lee K, Nguyen KD, Sun C, et al. LRRK2 p. Ile1371Val mutation in a case with neuropathologically confirmed multi-system atrophy[J]. J Parkinsons Dis, 2018, 8: 93-100. doi: 10.3233/JPD-171237
    [31] Sklerov M, Kang UJ, Liong C, et al. Frequency of GBA variants in autopsy-proven multiple system atrophy[J]. Mov Disord Clin Pract, 2017, 4: 574-581. doi: 10.1002/mdc3.12481
    [32] Heckman MG, Schottlaender L, Soto-Ortolaza AI, et al. LRRK2 exonic variants and risk of multiple system atrophy[J]. Neurology, 2014, 83: 2256-2261. doi: 10.1212/WNL.0000000000001078
    [33] Ogaki K, Heckman MG, Koga S, et al. Association study between multiple system atrophy and TREM2 p. R47H[J]. Neurol Genet, 2018, 4: e257. doi: 10.1212/NXG.0000000000000257
    [34] Cao B, Chen Y, Zhou Q, et al. Functional variant rs3135500 in NOD2 increases the risk of multiple system atrophy in a Chinese population[J]. Front Aging Neurosci, 2018, 10: 150. doi: 10.3389/fnagi.2018.00150
    [35] Goldman JS, Quinzii C, Dunning-Broadbent J, et al. Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72[J]. JAMA Neurol, 2014, 71: 771-774. doi: 10.1001/jamaneurol.2013.5762
    [36] Bonapace G, Gagliardi M, Procopio R, et al. Multiple system atrophy and C9orf72 hexanucleotide repeat expansions in a cohort of Italian patients[J]. Neurobiol Aging, 2021, 112: 12-15. https://pubmed.ncbi.nlm.nih.gov/35007998/
    [37] Chen X, Chen Y, Wei Q, et al. C9ORF72 repeat expansions in Chinese patients with Parkinson's disease and multiple system atrophy[J]. J Neural Transm (Vienna), 2016, 123 : 1341-1345. doi: 10.1007/s00702-016-1598-2
    [38] Sun Z, Jiang H, Jiao B, et al. C9orf72 hexanucleotide expansion analysis in Chinese patients with multiple system atrophy[J]. Parkinsonism Relat Disord, 2015, 21: 811-812. doi: 10.1016/j.parkreldis.2015.04.008
    [39] Schottlaender LV, Polke JM, Ling H, et al. Analysis of C9orf72 repeat expansions in a large series of clinically and pathologically diagnosed cases with atypical parkinsonism[J]. Neurobiol Aging, 2015, 36: 1221. e1-e6. https://pubmed.ncbi.nlm.nih.gov/25308964/
    [40] Labbé C, Heckman MG, Lorenzo-Betancor O, et al. MAPT haplotype diversity in multiple system atrophy[J]. Parkinsonism Relat Disord, 2016, 30: 40-45. doi: 10.1016/j.parkreldis.2016.06.010
    [41] Sailer A, Scholz SW, Nalls MA, et al. A genome-wide association study in multiple system atrophy[J]. Neurology, 2016, 87: 1591-1598. doi: 10.1212/WNL.0000000000003221
    [42] Gu X, Chen Y, Zhou Q, et al. Analysis of GWAS-linked variants in multiple system atrophy[J]. Neurobiol Aging, 2018, 67: 201. e1-201. e4. https://www.sciencedirect.com/science/article/pii/S0197458018300964
    [43] Carré G, Dietemann JL, Gebus O, et al. Brain MRI of multiple system atrophy of cerebellar type: a prospective study with implications for diagnosis criteria[J]. J Neurol, 2020, 267: 1269-1277. doi: 10.1007/s00415-020-09702-w
    [44] Chelban V, Bocchetta M, Hassanein S, et al. An update on advances in magnetic resonance imaging of multiple system atrophy[J]. J Neurol, 2019, 266: 1036-1045. doi: 10.1007/s00415-018-9121-3
    [45] Krismer F, Seppi K, Wenning G K, et al. Abnormalities on structural MRI associate with faster disease progression in multiple system atrophy[J]. Parkinsonism Relat Disord, 2019, 58: 23-27. doi: 10.1016/j.parkreldis.2018.08.004
    [46] Zhao P, Zhang B, Gao S, et al. Clinical features, MRI, and 18F-FDG-PET in differential diagnosis of Parkinson disease from multiple system atrophy[J]. Brain Behav, 2020, 10: e01827. https://pubmed.ncbi.nlm.nih.gov/32940411/
    [47] Sun X, Liu F, Liu Q, et al. Quantitative Research of (11)C-CFT and (18)F-FDG PET in Parkinson's Disease: A Pilot Study With NeuroQ Software[J]. Front Neurosci, 2019, 13: 299. doi: 10.3389/fnins.2019.00299
    [48] Bu LL, Liu FT, Jiang CF, et al. Patterns of dopamine transporter imaging in subtypes of multiple system atrophy[J]. Acta Neurol Scand, 2018, 138: 170-176. doi: 10.1111/ane.12932
    [49] Thobois S, Prange S, Scheiber C, et al. What a neurolo-gist should know about PET and SPECT functional imaging for parkinsonism: A practical perspective[J]. Parkinsonism Relat Disord, 2019, 59: 93-100. doi: 10.1016/j.parkreldis.2018.08.016
    [50] Alves Do Rego C, Namer IJ, Marcel C, et al. Prospective study of relevance of (123)I-MIBG myocardial scintigraphy and clonidine GH test to distinguish Parkinson's disease and multiple system atrophy[J]. J Neurol, 2018, 265: 2033-2039. doi: 10.1007/s00415-018-8941-5
    [51] Cong S, Xiang C, Wang H, et al. Diagnostic utility of fluid biomarkers in multiple system atrophy: a systematic review and meta-analysis[J]. J Neurol, 2021, 268: 2703-2712. doi: 10.1007/s00415-020-09781-9
    [52] Yang F, Li WJ, Huang XS. Alpha-synuclein levels in patients with multiple system atrophy: a meta-analysis[J]. Int J Neurosci, 2018, 128: 477-486. doi: 10.1080/00207454.2017.1394851
    [53] Jiang C, Hopfner F, Berg D, et al. Validation of α-Synuclein in L1CAM-Immunocaptured Exosomes as a Biomarker for the Stratification of Parkinsonian Syndromes[J]. Mov Disord, 2021, 36: 2663-2669. doi: 10.1002/mds.28591
    [54] Jiang C, Hopfner F, Katsikoudi A, et al. Serum neuronal exosomes predict and differentiate Parkinson's disease from atypical parkinsonism[J]. J Neurol Neurosurg Psychiatry, 2020, 91: 720-729. doi: 10.1136/jnnp-2019-322588
    [55] Dutta S, Hornung S, Kruayatidee A, et al. α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson's disease from multiple system atrophy[J]. Acta Neuropathol, 2021, 142: 495-511. doi: 10.1007/s00401-021-02324-0
    [56] Yuan A, Rao M V, Veeranna, et al. Neurofilaments and neurofilament proteins in health and disease[J]. Cold Spring Harb Perspect Biol, 2017, 9: a018309. doi: 10.1101/cshperspect.a018309
    [57] Marques TM, Van Rumund A, Oeckl P, et al. Serum NFL discriminates Parkinson disease from atypical parkinsonisms[J]. Neurology, 2019, 92: e1479-e1486. doi: 10.1212/WNL.0000000000007179
    [58] Hansson O, Janelidze S, Hall S, et al. Blood-based NfL: A biomarker for differential diagnosis of parkinsonian disorder[J]. Neurology, 2017, 88: 930-937. doi: 10.1212/WNL.0000000000003680
    [59] Zhang L, Cao B, Hou Y, et al. Neurofilament light chain predicts disease severity and progression in multiple system atrophy[J]. Mov Disord, 2022, 37: 421-426. doi: 10.1002/mds.28847
    [60] Xie D, Feng L, Huang H, et al. Cerebrospinal fluid biomarkers in multiple system atrophy relative to Parkinson's Disease: A Meta-Analysis[J]. Behav Neurol, 2021, 2021: 5559383. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188602/
    [61] Constantinescu R, Rosengren L, Eriksson B, et al. Cerebrospinal fluid neurofilament light and tau protein as mortality biomarkers in parkinsonism[J]. Acta Neurol Scand, 2019, 140: 147-156. doi: 10.1111/ane.13116
    [62] Zhang X, Liu DS, An CY, et al. Association between serum uric acid level and multiple system atrophy: A meta-analysis[J]. Clin Neurol Neurosurg, 2018, 169: 16-20. doi: 10.1016/j.clineuro.2018.03.023
    [63] Fukae J, Fujioka S, Yanamoto S, et al. Serum uric acid level is linked to the disease progression rate in male patients with multiple system atrophy[J]. Clin Neurol Neurosurg, 2017, 158: 15-19. doi: 10.1016/j.clineuro.2017.04.002
    [64] Cao B, Wei QQ, Ou R, et al. Association of serum uric acid level with cognitive function among patients with multiple system atrophy[J]. J Neurol Sci, 2015, 359: 363-366. doi: 10.1016/j.jns.2015.11.025
    [65] Jung Lee J, Han Yoon J, Jin Kim S, et al. Inosine 5'-Monophosphate to Raise Serum Uric Acid Level in Multiple System Atrophy (IMPROVE-MSA study)[J]. Clin Pharmacol Ther, 2021, 109: 1274-1281. doi: 10.1002/cpt.2082
    [66] Vacchi E, Senese C, Chiaro G, et al. Alpha-synuclein oligomers and small nerve fiber pathology in skin are potential biomarkers of Parkinson's disease[J]. NPJ Parkinsons Dis, 2021, 7 : 119. doi: 10.1038/s41531-021-00262-y
    [67] Kuzkina A, Schulmeyer L, Monoranu CM, et al. The aggregation state of α-synuclein deposits in dermal nerve fibers of patients with Parkinson's disease resembles that in the brain[J]. Parkinsonism Relat Disord, 2019, 64: 66-72. doi: 10.1016/j.parkreldis.2019.03.003
    [68] Brumberg J, Kuzkina A, Lapa C, et al. Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy[J]. Neurobiol Dis, 2021, 153: 105332. doi: 10.1016/j.nbd.2021.105332
    [69] Donadio V, Incensi A, Rizzo G, et al. Skin biopsy may help to distinguish multiple system atrophy-Parkinsonism from Parkinson's Disease with orthostatic hypotension[J]. Mov Disord, 2020, 35: 1649-1657. doi: 10.1002/mds.28126
    [70] Donadio V, Incensi A, El-Agnaf O, et al. Skin α-synuclein deposits differ in clinical variants of synucleinopathy: an in vivo study[J]. Sci Rep, 2018, 8: 14246. doi: 10.1038/s41598-018-32588-8
    [71] Giannoccaro MP, Donadio V, Giannini G, et al. Comparison of 123I-MIBG scintigraphy and phosphorylated α-synuclein skin deposits in synucleinopathies[J]. Parkinsonism Relat Disord, 2020, 81: 48-53. doi: 10.1016/j.parkreldis.2020.10.016
    [72] Paciotti S, Bellomo G, Gatticchi L, et al. Are we ready for detecting α-Synuclein prone to aggregation in patients? The case of "Protein-Misfolding Cyclic Amplification" and "Real-Time Quaking-Induced Conversion" as diagnostic tools[J]. Front Neurol, 2018, 9: 415. doi: 10.3389/fneur.2018.00415
    [73] Poggiolini I, Gupta V, Lawton M, et al. Diagnostic value of cerebrospinal fluid alpha-synuclein seed quantification in synucleinopathies[J]. Brain, 2022, 145: 584-595. doi: 10.1093/brain/awab431
    [74] Shahnawaz M, Mukherjee A, Pritzkow S, et al. Discriminat-ing α-synuclein strains in Parkinson's disease and multiple system atrophy[J]. Nature, 2020, 578: 273-277. doi: 10.1038/s41586-020-1984-7
    [75] De Luca CMG, Elia AE, Portaleone SM, et al. Efficient RT-QuIC seeding activity for α-synuclein in olfactory mucosa samples of patients with Parkinson's disease and multiple system atrophy[J]. Transl Neurodegener, 2019, 8: 24. doi: 10.1186/s40035-019-0164-x
    [76] Bargar C, De Luca CMG, Devigili G, et al. Discrimina-tion of MSA-P and MSA-C by RT-QuIC analysis of olfactory mucosa: the first assessment of assay reproducibility between two specialized laboratories[J]. Mol Neurodegener, 2021, 16: 82. doi: 10.1186/s13024-021-00491-y
    [77] Luan M, Sun Y, Chen J, et al. Diagnostic value of salivary real-time quaking-induced conversion in Parkinson's Disease and multiple system atrophy[J]. Mov Disord, 2022[Epub ahead of print].
    [78] Singer W, Schmeichel AM, Shahnawaz M, et al. Alpha-Synuclein oligomers and neurofilament light chain predict phenoconversion of pure autonomic failure[J]. Ann Neurol, 2021, 89: 1212-1220. doi: 10.1002/ana.26089
    [79] Quadalti C, Calandra-Buonaura G, Baiardi S, et al. Neurofilament light chain and α-synuclein RT-QuIC as differ-ential diagnostic biomarkers in parkinsonisms and related syndromes[J]. NPJ Parkinsons Dis, 2021, 7: 93. doi: 10.1038/s41531-021-00232-4
    [80] Martinez-Valbuena I, Visanji NP, Olszewska DA, et al. Combining skin α-Synuclein real-time quaking-induced conversion and circulating neurofilament light chain to distinguish multiple system atrophy and Parkinson's Disease[J]. Mov Disord, 2022, 37: 648-650. doi: 10.1002/mds.28912
    [81] Heo JH, Lee ST, Chu K, et al. The efficacy of combined estrogen and buspirone treatment in olivopontocerebellar atrophy[J]. J Neurol Sci, 2008, 271: 87-90. doi: 10.1016/j.jns.2008.03.016
    [82] Ilg W, Bastian AJ, Boesch S, et al. Consensus paper: management of degenerative cerebellar disorders[J]. Cerebellum, 2014, 13: 248-268. doi: 10.1007/s12311-013-0531-6
    [83] I lg W, Synofzik M, Brötz D, et al. Intensive coordinative training improves motor performance in degenerative cerebellar disease[J]. Neurology, 2009, 73: 1823-1830. doi: 10.1212/WNL.0b013e3181c33adf
    [84] Burns MR, Mcfarland NR. Current management and emerging therapies in multiple system atrophy[J]. Neurotherapeutics, 2020, 17: 1582-1602. doi: 10.1007/s13311-020-00890-x
    [85] Meissner WG, Laurencin C, Tranchant C, et al. Outcome of deep brain stimulation in slowly progressive multiple system atrophy: A clinico-pathological series and review of the literature[J]. Parkinsonism Relat Disord, 2016, 24: 69-75. doi: 10.1016/j.parkreldis.2016.01.005
    [86] Zhu XY, Pan TH, Ondo WG, et al. Effects of deep brain stimulation in relatively young-onset multiple system atrophy Parkinsonism[J]. J Neurol Sci, 2014, 342: 42-44. doi: 10.1016/j.jns.2014.04.022
    [87] Rohrer G, Hoglinger GU, Levin J. Symptomatic therapy of multiple system atrophy[J]. Auton Neurosci, 2018, 211: 26-30. doi: 10.1016/j.autneu.2017.10.006
    [88] Flabeau O, Meissner WG, Tison F. Multiple system atrophy: current and future approaches to management[J]. Ther Adv Neurol Disord, 2010, 3: 249-263. doi: 10.1177/1756285610375328
    [89] Ogawa T, Sakakibara R, Kuno S, et al. Prevalence and treatment of LUTS in patients with Parkinson disease or multiple system atrophy[J]. Nat Rev Urol, 2017, 14: 79-89. doi: 10.1038/nrurol.2016.254
    [90] Fowler CJ, O'malley KJ. Investigation and management of neurogenic bladder dysfunction[J]. J Neurol Neurosurg Psychiatry, 2003, 74: iv27-iv31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1765643/
    [91] St Louis EK, Boeve AR, Boeve BF. REM sleep behavior disorder in Parkinson's Disease and other synucleinopathies[J]. Mov Disord, 2017, 32: 645-658. doi: 10.1002/mds.27018
    [92] Cortelli P, Calandra-Buonaura G, Benarroch EE, et al. Stridor in multiple system atrophy: Consensus statement on diagnosis, prognosis, and treatment[J]. Neurology, 2019, 93: 630-639. doi: 10.1212/WNL.0000000000008208
    [93] Ubhi K, Rockenstein E, Mante M, et al. Rifampicin reduces alpha-synuclein in a transgenic mouse model of multiple system atrophy[J]. Neuroreport, 2008, 19: 1271-1276. doi: 10.1097/WNR.0b013e32830b3661
    [94] Low PA, Robertson D, Gilman S, et al. Efficacy and safety of rifampicin for multiple system atrophy: a randomised, double-blind, placebo-controlled trial[J]. Lancet Neurol, 2014, 13 : 268-275. doi: 10.1016/S1474-4422(13)70301-6
    [95] Sacca F, Marsili A, Quarantelli M, et al. A randomized clinical trial of lithium in multiple system atrophy[J]. J Neurol, 2013, 260: 458-461. doi: 10.1007/s00415-012-6655-7
    [96] Meissner WG, Traon A P, Foubert-Samier A, et al. A phase 1 randomized trial of specific active α-Synuclein immunotherapies PD01A and PD03A in multiple system atrophy[J]. Mov Disord, 2020, 35: 1957-1965. doi: 10.1002/mds.28218
    [97] Novak P, Williams A, Ravin P, et al. Treatment of multiple system atrophy using intravenous immunoglobulin[J]. BMC Neurol, 2012, 12: 131. doi: 10.1186/1471-2377-12-131
    [98] Ubhi K, Rockenstein E, Mante M, et al. Neurode-generation in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors[J]. J Neurosci, 2010, 30: 6236-6246. doi: 10.1523/JNEUROSCI.0567-10.2010
    [99] Lee PH, Kim JW, Bang OY, et al. Autologous mesen-chymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy[J]. Clin Pharmacol Ther, 2008, 83: 723-730. doi: 10.1038/sj.clpt.6100386
    [100] Lee PH, Lee JE, Kim HS, et al. A randomized trial of mesenchymal stem cells in multiple system atrophy[J]. Ann Neurol, 2012, 72: 32-40. doi: 10.1002/ana.23612
    [101] Chung SJ, Lee TY, Lee YH, et al. Phase I trial of intra-arterial administration of autologous bone marrow-derived mesenchymal stem cells in patients with multiple system atrophy[J]. Stem Cells Int, 2021, 2021: 9886877. https://pubmed.ncbi.nlm.nih.gov/34712335/
  • 加载中
表(3)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  185
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 录用日期:  2022-04-10
  • 网络出版日期:  2022-06-02

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《罕见病研究》编辑部接到作者反映,有多名不法人员冒充期刊编辑通过邮箱或者短信发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱:jrd@chard.org.cn,编辑部电话:010-85893835,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!