法布雷病心脏受累——强化认识,早诊早治

李卓津, 金玮

李卓津, 金玮. 法布雷病心脏受累——强化认识,早诊早治[J]. 罕见病研究, 2023, 2(1): 121-127. DOI: 10.12376/j.issn.2097-0501.2023.01.017
引用本文: 李卓津, 金玮. 法布雷病心脏受累——强化认识,早诊早治[J]. 罕见病研究, 2023, 2(1): 121-127. DOI: 10.12376/j.issn.2097-0501.2023.01.017
LI Zhuojin, JIN Wei. Fabry Disease Cardiac Involvement: Strengthen the Understanding of Early Diagnosis and Treatment[J]. Journal of Rare Diseases, 2023, 2(1): 121-127. DOI: 10.12376/j.issn.2097-0501.2023.01.017
Citation: LI Zhuojin, JIN Wei. Fabry Disease Cardiac Involvement: Strengthen the Understanding of Early Diagnosis and Treatment[J]. Journal of Rare Diseases, 2023, 2(1): 121-127. DOI: 10.12376/j.issn.2097-0501.2023.01.017

法布雷病心脏受累——强化认识,早诊早治

基金项目: 

国家自然科学基金项目 81970337

国家自然科学基金项目 82270404

上海市学术/技术带头人计划项目 21XD1402100

详细信息
    通讯作者:

    金玮,E-mail:jinwei@shsmu.edu.cn

  • 中图分类号: R54

Fabry Disease Cardiac Involvement: Strengthen the Understanding of Early Diagnosis and Treatment

Funds: 

National Natural Science Foundation of China 81970337

National Natural Science Foundation of China 82270404

Program of Shanghai Academic/Technology Research Leader 21XD1402100

More Information
  • 摘要:

    法布雷病是一种由GLA基因突变导致的X染色体连锁遗传溶酶体贮积症,该基因编码的α半乳糖苷酶A活性受损,造成其代谢底物三己糖酰基鞘脂醇(GL-3)在心脏、肾脏等多脏器贮积。法布雷病心脏受累在临床上主要表现为左心室肥厚(LVH)、心肌纤维化、心力衰竭和心律失常等,是降低患者生活质量、造成患者死亡的首要原因。近年来,酶活性检测和基因检测技术的普及使法布雷病确诊不再困难,心电图、心脏超声、心脏磁共振(CMR)等多种影像手段为临床识别法布雷病心脏受累者提供了重要价值。酶替代疗法(ERT)的应用显著延缓了患者的疾病进程,口服药物分子伴侣治疗、底物减少治疗等亦拓宽了法布雷病特异性治疗的前景。因此,早发现、早诊断、早治疗成为法布雷病心脏受累诊疗的重点和难点。本文将对法布雷病心脏受累的概况、病理生理机制、诊断与分期、治疗进行综述。

    Abstract:

    Fabry disease is an X-linked inherited lysosomal storage disorder caused by mutations of the GLA gene, resulting in the decreased a-galactosidase A activity and the accumulation of its substrate globotriasylceramide (GL-3) in the heart, kidney and other organs. The main clinical manifestations of cardiac involvement in Fabry disease are left ventricular hypertrophy (LVH), myocardial fibrosis, heart failure and arrhythmia, which limit quality of life and represent the most common causes of death. Following the development of enzyme activity and genetics testing, diagnosis of Fabry disease is no longer difficult. The application of enzyme replacement therapy (ERT) has also significantly slow disease progression. Therefore, early diagnosis and treatment have become essential in the management of Fabry disease cardiac involvement. Electrocardiogram, echocardiography and cardiac magnetic resonance(CMR) allow early detection of suspected patients. In addition, with the approval of oral chaperone therapy and substrate reduction therapy, the Fabry disease specific treatment landscape is evolving. This article will review the general features, pathophysiology, diagnosis and treatment of Fabry disease with cardiac involvement.

  • 法布雷病是一种罕见的X染色体连锁遗传溶酶体贮积症,因GLA基因突变导致其编码的α半乳糖苷酶A(α-Gal A)活性降低或完全丧失,造成该酶的代谢底物三己糖酰基鞘脂醇(GL-3)及其衍生物脱乙酰基GL-3(lyso-GL-3)在心脏、肾脏、神经、皮肤、胃肠道、眼部等全身多部位贮积,引发相应的临床表现。其中,心脏受累主要表现为左心室肥厚(left ventricular hypertrophy,LVH)、心力衰竭、心律失常;肾脏受累主要表现为蛋白尿、进行性肾衰竭;神经受累主要表现为短暂性脑缺血发作、卒中、肢端疼痛、出汗障碍;皮肤受累主要表现为血管角质瘤;胃肠道受累主要表现为间歇性便秘和腹泻;眼部受累主要表现为角膜涡状混浊、眼底静脉迂曲、晶体混浊[1]。法布雷病临床分型可分为经典型和迟发型。经典型者多为男性,于儿童期起病,通常以肢端疼痛、出汗障碍等外周神经病变为首发表现,至成年期可出现心脏、肾脏累及;迟发型者多见于女性,发病率相较于经典型多10倍以上,于中年期起病,仅累及心脏或肾脏单个器官,其中仅累及心脏者又称“心脏变异型”[2]。X染色体随机失活现象(里昂化)可使女性患者呈现异质性的临床表现,部分患者可无症状或表现为迟发型,部分患者也可表现为经典型[3]

    目前尚无确切的法布雷病患病率统计数据,世界人口中预估患病率约为1/10万[2];澳大利亚数据显示根据酶学检测诊断的法布雷病患病率约为1/11.7万[4];波兰数据显示法布雷病患病率约为2.5/100万[2]。而多个国家和地区的新生儿筛查结果却显示法布雷病的发病率不止如此,在意大利北部,男性新生儿发病率约1/3100,迟发型和经典型比例约为11∶1[5];在中国台湾,男性新生儿发病率约1/1250、女性新生儿发病率约1/40 840[6];在日本,新生儿总体发病率约1/7683,其中致病性突变发病率为1∶11 854,男性新生儿发病率为1∶6212[7]

    迄今发现的GLA基因突变已超过1000种,分为致病性、良性和意义未明的突变(variants of unclear significance,VUS)[8]。突变类型包括无义突变、错义突变、移码突变和剪切突变等[9]。无义突变、移码突变通常导致α-Gal A活性极低或完全丧失,临床多表现为经典型;错义突变者α-Gal A活性可部分保留或接近正常,临床多表现为迟发型[8]

    法布雷病心脏受累的表现包括心室肥厚和纤维化、瓣膜增厚或反流、心力衰竭、心绞痛、心律失常及心源性猝死等[10]。心脏受累的症状和体征可见于60%的男性患者和50%的女性患者,发生的平均年龄分别为29岁和35岁[11]。LVH是法布雷病心脏受累最常见的体征之一,在男性和女性患者中发生率分别为43%和26%,首发平均年龄分别为39岁和50岁[12]。LVH的发生率亦随年龄增长而增长,在75岁及以上的患者中高达77%[13]

    法布雷病心脏受累是限制患者生活质量、造成患者死亡的首要原因。法布雷结局调查(Fabry outcome survey,FOS)研究显示,心脏疾病占男性患者死因的34%、女性患者死因的57%[11]。法布雷注册(Fabry registry)研究也得出大致相似结论,心血管并发症占患者总体死因的40%,其导致的平均死亡年龄在男性和女性中分别为55岁、66岁[14]。一项纳入了13项研究、共计4185名法布雷病患者的荟萃分析显示,在随访1.2~10年后,法布雷病的死亡率为8.3%,其中75%死因为心脏疾病, 62%死因为心源性猝死[15]

    法布雷病心脏变异型患者仅具有心脏症状和体征,目前已报道的与心脏变异型相关的基因突变有p.N215S(高加索人群)[16]、IVS4+919G>A(中国台湾地区人群)等,后者在中国台湾男性新生儿筛查中的检出率更是高达1/1600[17]。法布雷病心脏变异型者的心脏受损严重程度与经典型者类似,但出现时间可延后15年之久[16]。因缺乏心脏外表现,这类患者成为法布雷病诊疗中的难点,其临床表型易与肥厚型心肌病(hypertrophic cardiomyopathy,HCM)相混淆,一项基于5491例临床诊断为LVH或HCM患者的研究显示,0.93%的男性和0.90%的女性可检测到GLA基因的致病性突变[18]

    代谢底物GL-3可在心脏组织内几乎所有类型的细胞中贮积,包括心肌细胞、内皮细胞、平滑肌细胞、成纤维细胞和传导纤维等,其中贮积于心肌细胞内可导致LVH和舒张功能障碍,贮积于心肌血管内皮细胞和平滑肌细胞内可导致血管结构异常、心肌缺血,贮积于传导系统内可导致房室传导及室内传导功能异常、心房颤动及室性心律失常[19]。然而单纯用GL-3的机械占位效应并不能完全解释法布雷病心脏受累的病理生理机制。近期有研究发现,GL-3贮积可进一步激活下游信号通路,引发相关功能受损。例如,GL-3在溶酶体内贮积可损害细胞的内吞及自噬功能,影响线粒体能量代谢并诱发细胞凋亡[20];在法布雷病患者心内膜活检所分离的心肌细胞中还发现了肌节肌丝功能障碍及肌原纤维溶解[21];法布雷病患者多能干细胞诱导的心肌细胞中钠离子和钙离子通道活性增强,导致其自发动作电位幅度升高、时程缩短[22];GL-3和lyso-GL-3还可作为脂质抗原,激活自然杀伤细胞、T细胞等免疫细胞,引起慢性炎症和自身免疫反应[23],法布雷病患者心内膜活检病理证实了心脏组织中有炎症细胞的浸润[24]

    对于男性而言,经典型患者α-Gal A活性通常极低(<1%)或不存在,迟发型或心脏变异型患者酶活性虽有所保留,但通常仍低于正常值的30%,因此酶活性检测即可成为法布雷病诊断的强有力证据。但对于女性而言,由于X染色体里昂化的影响,临床表型通常更为复杂,α-Gal A活性也可正常,因此基因检测在女性法布雷病诊断中发挥着不可或缺的作用。目前医学界公认,对于疑诊法布雷病者,不论男女,均应行致病性基因检测以证实诊断[25]。而对于基因检测VUS的患者,血lyso-GL-3水平评估和心内膜活检可用于进一步协助诊断,法布雷病典型的病理表现为光镜下空泡改变,电镜下可见受累细胞中“髓样小体”[26]

    而在心内科临床工作中,识别可疑法布雷病患者,及早进行酶学和基因学检测是诊治的关键。确诊患者的家系筛查可提高法布雷病诊断率[27];对病因未明的LVH、射血分数保留的心力衰竭(heart failure with preserved ejection fraction,HFpEF)等患者人群的系统筛查亦有助于判断病因[25]。临床表现方面,识别法布雷病特异性的心脏外“危险信号(red flags)”可提示诊断,常见的包括皮肤角质血管瘤、角膜涡状浑浊、肢端疼痛等;某些心脏内“危险信号”对法布雷病的诊断亦具有辅助作用。

    心电图异常是法布雷病心脏受累最早的临床表现之一,可出现于患者童年时期,典型特点包括PR间期缩短、复极化异常和左心室电压异常,上述改变可早于心脏整体结构异常[28]。在年龄较大的患者中,窦性心动过缓、房室传导异常、室内传导阻滞等更为常见,且常与不良预后相关[29]。而24 h动态心电图检查可提高室上性心律失常和室性心律失常的检出率[30]

    心脏超声(简称心超)是临床识别LVH最常用的检查手段,法布雷病心脏受累通常表现为对称性、向心性LVH,但也有部分人群表现为非对称性室间隔肥厚、左心室流出道梗阻甚至心尖肥厚[31]。右心室肥厚(right ventricular hypertrophy,RVH)是法布雷病心脏受累的常见特征,不同团队报道的RVH发生率介于30%[32]~70%[33]之间,但右心室功能通常不受损。乳头肌肥大是法布雷病心脏受累较为特异的表现,Niemann等[34]研究发现,法布雷病心脏受累者的乳头肌面积、乳头肌面积/左心室周长比值均显著高于淀粉样变性、主动脉狭窄等其他病因所致的LVH。心超上以心肌内外层强回声、中层低回声为表现的“双边征”曾被认为是法布雷病的特异表现,但近年来已有研究改变了此观点[35]。组织多普勒、斑点追踪成像等影像学技术可早期发现心脏收缩和舒张功能异常,在LVH出现之前法布雷病心脏受累即可表现出血流速度下降[36],左室整体纵向应变(global longitudinal strain,GLS)、左室环向应变、左室节段应变、左房应变、右室应变降低[37],以及基底部至心尖部环向应变梯度变化的消失,其中基底部下外侧壁节段应变异常与心脏磁共振(cardiac magnetic resonance,CMR)中该部位的钆延迟增强(late gadolinium enhancement,LGE)相对应[38]

    相较于心超,CMR在测量室壁厚度、心室质量、心室容积等参数方面的精确度更高,且一些特殊序列还可以在一定程度上反映心肌的组织学特征。基底部下外侧LGE是法布雷病心脏受累在CMR的典型表现,尤其在女性患者中可先于LVH出现[39]。LGE的出现与法布雷病患者治疗效果不佳,以及发生恶性心律失常、心源性猝死等不良心脏事件独立相关[40]。T1 mapping可反映心脏组织内脂质沉积情况,GL-3的贮积可导致平扫T1下降,是法布雷病心脏受累非常具有诊断意义的影像学特点[41]。平扫T1数值亦与左心室的室壁厚度、GLS相关[42]。Nordin等[43]研究发现,酶替代疗法(enzyme replacement therapy,ERT)一年组与对照组相比,前者T1降低显著延缓,提示T1可作为监测患者疾病严重程度、反映治疗效果的临床指标。T2 mapping可反映心肌组织的水肿情况,已有研究发现法布雷病患者存在T2升高,且该现象在LGE区域尤为明显,并与血清肌钙蛋白水平相关,提示炎症作为法布雷病心脏累及的重要致病机制之一[44]。2018年,Nordin等[45]根据T1、LGE及LVH,将法布雷病心脏受累CMR表现分为3个阶段:①贮积阶段:T1正常或轻度降低,不伴LVH;②炎症和心肌肥厚阶段:T1降低,基底部下外侧壁LGE,伴或不伴LVH;③纤维化与功能损伤阶段:LVH及广泛LGE。

    PET显像可反映法布雷病心脏受累患者冠状动脉血流灌注情况,以往研究表明,法布雷病患者存在冠状动脉微血管的功能异常[46]。氟18脱氧葡萄糖(F18 fludeoxyglucose,FDG)代谢显像高摄取与心肌组织炎症有关,FDG-PET/CMR提示法布雷病患者FDG高摄取区域T2值亦升高[47]。间碘123苄胍(123I-metaiodobenzylguanidine,MIBG)显像可用于反映交感神经元的损伤情况,近年来研究表明,法布雷病心脏受累患者MIBG摄取降低,且先于区域LGE出现[48]

    在血清生物标志物方面,肌钙蛋白、N端脑钠肽前体(N-terminal pro-B type natriuretic peptide,NT-proBNP)等传统心脏生物学标志物的升高虽缺乏特异性,但可用于辅助评估心脏损害程度分期[49]。法布雷病心脏受累的诊断流程见图 1

    图  1  法布雷病心脏受累的诊断流程
    LVH:左心室肥厚;HFpEF:射血分数保留的心力衰竭;α-Gal A: α半乳糖苷酶A; lyso-GL-3:脱乙酰基三己糖酰基鞘脂醇;CMR:心脏磁共振;LGE:钆延迟增强
    Figure  1.  The diagnostic procedure for cardiac involvement in Fabry disease

    总体治疗目标是延缓疾病进展、预防不可逆的脏器损害。治疗的启动、疗效的监测需要多学科临床工作者的共同配合。对于法布雷病心脏受累来说,心脏科医生治疗的主要目标是提高患者生活质量、预防心血管不良事件的发生。

    ERT已有十余年的历史,可显著延缓法布雷病的自然病程、提高患者生活质量。Germain等[50]对36项临床研究的荟萃分析显示,ERT可显著降低男性患者血清、尿液中的GL-3水平,同时降低或稳定患者左心室质量指数(left ventricular mass index,LVMi)。法布雷病注册研究数据显示,ERT可有效降低心血管事件的发生率,早期启动ERT还可预防LVH、逆转轻度LVH[51]。然而,法布雷病心脏受累晚期患者对ERT的反应性较差,ERT无法有效控制该类患者心肌纤维化和LVH的进展[50]

    分子伴侣药物migalastat是一种新型口服药,适用于易感型GLA基因突变的患者(易感型突变定义为α-Gal A活性残留超过正常值3%,且在患者体外培养的淋巴细胞中,20 μmol/L migalastat可使其酶活性升高超过20%)[8]。一项纳入了67例法布雷病患者的随机双盲对照研究显示,易感型患者经migalastat治疗24个月后,与安慰剂组相比LVMi显著下降,且在LVH存在时这一效应更明显[52]

    底物减少治疗venglustatⅡ期临床研究部分结果证实了其安全性[53],其长期心脏效应还有待进一步观察,目前该药物的Ⅲ期临床研究正由本中心牵头在国内开展。

    此外,基因、mRNA治疗,以及二代ERT也正在临床试验阶段或研发中,有望为法布雷病治疗提供新的方向[54]

    2020年欧洲心脏病学会法布雷病心血管表现管理专家共识[25]指出,应按相应临床指南管理心力衰竭、心绞痛、左心室流出道梗阻、心房颤动、室性心律失常等法布雷病心脏并发症,但需慎用β受体阻滞剂、伊伐布雷定、地尔硫等具有减慢心率作用的药物,因法布雷病患者可能存在窦房结或房室结功能障碍,该类药物的使用会增加缓慢型心律失常的发生风险。Ic类药物禁止用于任何心肌病。胺碘酮具有抑制溶酶体分解磷脂的作用,不推荐在法布雷病患者中使用。如法布雷病患者合并心房颤动,无论CHA2DS2-VASC评分如何,均应考虑抗凝治疗。

    需加强对法布雷病患者的临床随访,心脏方面的随访内容包括临床评估、肌钙蛋白、NT-proBNP、心电图、超声心动图、动态心动图及CMR。血lyso-GL-3在评价法布雷病心脏累及严重程度和疗效作用尚有待定夺,microRNA等新型生物学标志物的临床价值正在探索中[43]

    综上所述,近年来随着ERT药物的临床应用及新型治疗方式不断研发,法布雷病作为一种罕见遗传病,已经成为一种可被治疗的疾病,自然病程得到明显延缓,患者预期寿命显著增加。但必须清醒地认识到,法布雷病心脏受累是造成患者生活质量下降乃至死亡的主要原因,如何实现法布雷病早诊早治,防治其心脏受累,是心脏科同道面临的重大问题,需加强重视并与多学科专家携手攻坚克难。

    作者贡献:李卓津、金玮共同参与综述选题、文献检索、分析及论文撰写。
    利益冲突:所有作者均声明不存在利益冲突。
  • 图  1   法布雷病心脏受累的诊断流程

    LVH:左心室肥厚;HFpEF:射血分数保留的心力衰竭;α-Gal A: α半乳糖苷酶A; lyso-GL-3:脱乙酰基三己糖酰基鞘脂醇;CMR:心脏磁共振;LGE:钆延迟增强

    Figure  1.   The diagnostic procedure for cardiac involvement in Fabry disease

  • [1] 中国法布雷病专家协作组. 中国法布雷病诊疗专家共识(2021年版)[J]. 中华内科杂志, 2021, 60(4): 321-330. doi: 10.3760/cma.j.cn112138-20201218-01028
    [2]

    Nowicki M, Bazan-Socha S, Bła żejewska-Hyzorek B, et al. Enzyme replacement therapy in Fabry disease in Poland: a position statement[J]. Pol Arch Intern Med, 2020, 130(1): 91-97.

    [3]

    Echevarria L, Benistan K, Toussaint A, et al. X-chromosome inactivation in female patients with Fabry disease[J]. Clin Genet, 2016, 89(1): 44-54. doi: 10.1111/cge.12613

    [4]

    Meikle PJ, Hopwood JJ, Clague AE, et al. Prevalence of lysosomal storage disorders[J]. JAMA, 1999, 281(3): 249-254. doi: 10.1001/jama.281.3.249

    [5]

    Spada M, Pagliardini S, Yasuda M, et al. High incidence of later-onset Fabry disease revealed by newborn screening[J]. Am J Hum Genet, 2006, 79(1): 31-40. doi: 10.1086/504601

    [6]

    Hwu WL, Chien YH, Lee NC, et al. Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c. 936+919G > A (IVS4+919G > A)[J]. Hum Mutat, 2009, 30(10): 1397-1405. doi: 10.1002/humu.21074

    [7]

    Sawada T, Kido J, Yoshida S, et al. Newborn screening for Fabry disease in the western region of Japan[J]. Mol Genet Metab Rep, 2020, 22: 100562. doi: 10.1016/j.ymgmr.2019.100562

    [8]

    Pieroni M, Moon JC, Arbustini E, et al. Cardiac involvement in Fabry disease: JACC review topic of the week[J]. J Am Coll Cardiol, 2021, 77(7): 922-936. doi: 10.1016/j.jacc.2020.12.024

    [9]

    Ortiz A, Germain DP, Desnick RJ, et al. Fabry disease revisited: management and treatment recommendations for adult patients[J]. Mol Genet Metab, 2018, 123(4): 416-427. doi: 10.1016/j.ymgme.2018.02.014

    [10]

    Linhart A, Elliott PM. The heart in Anderson-Fabry disease and other lysosomal storage disorders[J]. Heart, 2007, 93(4): 528-535. doi: 10.1136/hrt.2005.063818

    [11]

    Mehta A, Clarke JT, Giugliani R, et al. Natural course of Fabry disease: changing pattern of causes of death in FOS-Fabry Outcome Survey[J]. J Med Genet, 2009, 46(8): 548-552. doi: 10.1136/jmg.2008.065904

    [12]

    Kampmann C, Linhart A, Baehner F, et al. Onset and progression of the Anderson-Fabry disease related cardiomyopathy[J]. Int J Cardiol, 2008, 130(3): 367-373. doi: 10.1016/j.ijcard.2008.03.007

    [13]

    Lidove O, Barbey F, Niu DM, et al. Fabry in the older patient: clinical consequences and possibilities for treatment[J]. Mol Genet Metab, 2016, 118(4): 319-325. doi: 10.1016/j.ymgme.2016.05.009

    [14]

    Waldek S, Patel MR, Banikazemi M, et al. Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry[J]. Genet Med, 2009, 11(11): 790-796. doi: 10.1097/GIM.0b013e3181bb05bb

    [15]

    Baig S, Edward NC, Kotecha D, et al. Ventricular arrhythmia and sudden cardiac death in Fabry disease: a systematic review of risk factors in clinical practice[J]. Europace, 2018, 20(FI2): f153-f161. doi: 10.1093/europace/eux261

    [16]

    Germain DP, Brand E, Burlina A, et al. Phenotypic characteristics of the p. Asn215Ser (p. N215S) GLA mutation in male and female patients with Fabry disease: a multicenter Fabry Registry study[J]. Mol Genet Genomic Med, 2018, 6(4): 492-503. doi: 10.1002/mgg3.389

    [17]

    Hsu TR, Hung SC, Chang FP, et al. Later onset Fabry disease, cardiac damage progress in silence: experience with a highly prevalent mutation[J]. J Am Coll Cardiol, 2016, 68(23): 2554-2563. doi: 10.1016/j.jacc.2016.09.943

    [18]

    Doheny D, Srinivasan R, Pagant S, et al. Fabry disease: prevalence of affected males and heterozygotes with pathogenic GLA mutations identified by screening renal, cardiac and stroke clinics, 1995-2017[J]. J Med Genet, 2018, 55(4): 261-268. doi: 10.1136/jmedgenet-2017-105080

    [19]

    Nair V, Belanger EC, Veinot JP. Lysosomal storage disorders affecting the heart: a review[J]. Cardiovasc Pathol, 2019, 39: 12-24. doi: 10.1016/j.carpath.2018.11.002

    [20]

    Ivanova M. Altered sphingolipids metabolism damaged mitochondrial functions: lessons learned from gaucher and Fabry diseases[J]. J Clin Med, 2020, 9(4): 1116. doi: 10.3390/jcm9041116

    [21]

    Chimenti C, Hamdani N, Boontje NM, et al. Myofilament degradation and dysfunction of human cardiomyocytes in Fabry disease[J]. Am J Pathol, 2008, 172(6): 1482-1490. doi: 10.2353/ajpath.2008.070576

    [22]

    Birket MJ, Raibaud S, Lettieri M, et al. A human stem cell model of Fabry disease implicates LIMP-2 accumulation in cardiomyocyte pathology[J]. Stem Cell Reports, 2019, 13(2): 380-393. doi: 10.1016/j.stemcr.2019.07.004

    [23]

    Rozenfeld P, Feriozzi S. Contribution of inflammatory pathways to Fabry disease pathogenesis[J]. Mol Genet Metab, 2017, 122(3): 19-27. doi: 10.1016/j.ymgme.2017.09.004

    [24]

    Frustaci A, Verardo R, Grande C, et al. Immune-mediated myocarditis in Fabry disease cardiomyopathy[J]. J Am Heart Assoc, 2018, 7(17): e009052. doi: 10.1161/JAHA.118.009052

    [25]

    Linhart A, Germain DP, Olivotto I, et al. An expert consensus document on the management of cardiovascular manifestations of Fabry disease[J]. Eur J Heart Fail, 2020, 22(7): 1076-1096. doi: 10.1002/ejhf.1960

    [26]

    Smid BE, van der Tol L, Cecchi F, et al. Uncertain diagnosis of Fabry disease: consensus recommendation on diagnosis in adults with left ventricular hypertrophy and genetic variants of unknown significance[J]. Int J Cardiol, 2014, 177(2): 400-408. doi: 10.1016/j.ijcard.2014.09.001

    [27]

    Hagège A, Réant P, Habib G, et al. Fabry disease in cardiology practice: literature review and expert point of view[J]. Arch Cardiovasc Dis, 2019, 112(4): 278-287. doi: 10.1016/j.acvd.2019.01.002

    [28]

    Namdar M, Steffel J, Vidovic M, et al. Electrocardio-graphic changes in early recognition of Fabry disease[J]. Heart, 2011, 97(6): 485-490. doi: 10.1136/hrt.2010.211789

    [29]

    O'Mahony C, Coats C, Cardona M, et al. Incidence and predictors of anti-bradycardia pacing in patients with Anderson-Fabry disease[J]. Europace, 2011, 13(12): 1781-1788. doi: 10.1093/europace/eur267

    [30]

    Sené T, Lidove O, Sebbah J, et al. Cardiac device implantation in Fabry disease: a retrospective monocentric study[J]. Medicine(Baltimore), 2016, 95(40): e4996.

    [31]

    Cianciulli TF, Saccheri MC, Fernández SP, et al. Apical left ventricular hypertrophy and mid-ventricular obstruction in Fabry disease[J]. Echocardiography, 2015, 32(5): 860-863. doi: 10.1111/echo.12900

    [32]

    Graziani F, Laurito M, Pieroni M, et al. Right ventricular hypertrophy, systolic function, and disease severity in anderson-Fabry disease: an echocardiographic study[J]. J Am Soc Echocardiogr, 2017, 30(3): 282-291. doi: 10.1016/j.echo.2016.11.014

    [33]

    Niemann M, Breunig F, Beer M, et al. The right ventricle in Fabry disease: natural history and impact of enzyme replacement therapy[J]. Heart, 2010, 96(23): 1915-1919. doi: 10.1136/hrt.2010.204586

    [34]

    Niemann M, Liu D, Hu K, et al. Prominent papillary muscles in Fabry disease: a diagnostic marker?[J]. Ultrasound Med Biol, 2011, 37(1): 37-43. doi: 10.1016/j.ultrasmedbio.2010.10.017

    [35]

    Mundigler G, Gaggl M, Heinze G, et al. The endocardial binary appearance ('binary sign')is an unreliable marker for echocardiographic detection of Fabry disease in patients with left ventricular hypertrophy[J]. Eur J Echocardiogr, 2011, 12(10): 744-749. doi: 10.1093/ejechocard/jer112

    [36]

    Toro R, Perez-Isla L, Doxastaquis G, et al. Clinical usefulness of tissue Doppler imaging in predicting preclinical Fabry cardiomyopathy[J]. Int J Cardiol, 2009, 132(1): 38-44. doi: 10.1016/j.ijcard.2008.04.075

    [37]

    Krämer J, Niemann M, Liu D, et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease[J]. Eur Heart J, 2013, 34(21): 1587-1596. doi: 10.1093/eurheartj/eht098

    [38]

    Labombarda F, Saloux E, Milesi G, et al. Loss of base-to-apex circumferential strain gradient: a specific pattern of Fabry cardiomyopathy?[J]. Echocardiography, 2017, 34(4): 504-510. doi: 10.1111/echo.13496

    [39]

    Weidemann F, Beer M, Kralewski M, et al. Early detection of organ involvement in Fabry disease by biomarker assessment in conjunction with LGE cardiac MRI: results from the SOPHIA study[J]. Mol Genet Metab, 2019, 126(2): 169-182. doi: 10.1016/j.ymgme.2018.11.005

    [40]

    Krämer J, Niemann M, Störk S, et al. Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease[J]. Am J Cardiol, 2014, 114(6): 895-900. doi: 10.1016/j.amjcard.2014.06.019

    [41]

    Pica S, Sado DM, Maestrini V, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2014, 16(1): 99. doi: 10.1186/s12968-014-0099-4

    [42]

    Nordin S, Kozor R, Baig S, et al. Cardiac phenotype of prehypertrophic Fabry disease[J]. Circ Cardiovasc Imaging, 2018, 11(6): e007168. doi: 10.1161/CIRCIMAGING.117.007168

    [43]

    Nordin S, Kozor R, Vijapurapu R, et al. Myocardial storage, inflammation, and cardiac phenotype in Fabry disease after one year of enzyme replacement therapy[J]. Circ Cardiovasc Imaging, 2019, 12(12): e009430. doi: 10.1161/CIRCIMAGING.119.009430

    [44]

    Nordin S, Kozor R, Bulluck H, et al. Cardiac Fabry disease with late gadolinium enhancement is a chronic inflammatory cardiomyopathy[J]. J Am Coll Cardiol, 2016, 68(15): 1707-1708. doi: 10.1016/j.jacc.2016.07.741

    [45]

    Nordin S, Kozor R, Medina-Menacho K, et al. Proposed stages of myocardial phenotype development in Fabry disease[J]. JACC Cardiovasc Imaging, 2019, 12(8 Pt 2): 1673-1683.

    [46]

    Tomberli B, Cecchi F, Sciagrà R, et al. Coronary microvascular dysfunction is an early feature of cardiac involvement in patients with Anderson-Fabry disease[J]. Eur J Heart Fail, 2013, 15(12): 1363-1373. doi: 10.1093/eurjhf/hft104

    [47]

    Nappi C, Altiero M, Imbriaco M, et al. First experience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson-Fabry disease[J]. Eur J Nucl Med Mol Imaging, 2015, 42(7): 1025-1031. doi: 10.1007/s00259-015-3036-3

    [48]

    Imbriaco M, Pellegrino T, Piscopo V, et al. Cardiac sympathetic neuronal damage precedes myocardial fibrosis in patients with Anderson-Fabry disease[J]. Eur J Nucl Med Mol Imaging, 2017, 44(13): 2266-2273. doi: 10.1007/s00259-017-3778-1

    [49]

    Spada M, Kasper D, Pagliardini V, et al. Metabolic progression to clinical phenotype in classic Fabry disease[J]. Ital J Pediatr, 2017, 43(1): 1. doi: 10.1186/s13052-016-0320-1

    [50]

    Germain DP, Elliott PM, Falissard B, et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: a systematic literature review by a European panel of experts[J]. Mol Genet Metab Rep, 2019, 19: 100454. doi: 10.1016/j.ymgmr.2019.100454

    [51]

    Spada M, Baron R, Elliott PM, et al. The effect of enzyme replacement therapy on clinical outcomes in paediatric patients with Fabry disease-A systematic literature review by a European panel of experts[J]. Mol Genet Metab, 2019, 126(3): 212-223. doi: 10.1016/j.ymgme.2018.04.007

    [52]

    Germain DP, Hughes DA, Nicholls K, et al. Treatment of Fabry's disease with the pharmacologic chaperone migalastat[J]. N Engl J Med, 2016, 375(6): 545-555. doi: 10.1056/NEJMoa1510198

    [53]

    Deegan PB, Goker-Alpan O, Geberhiwot T, et al. Venglustat, an orally administered glucosylceramide synthase inhibitor: assessment over 3 years in adult males with classic Fabry disease in an open-label phase 2 study and its extension study[J]. Mol Genet Metab, 2022, doi: 10.1016/j.ymgme.2022.11.002.

    [54]

    van der Veen SJ, Hollak CEM, van Kuilenburg ABP, et al. Developments in the treatment of Fabry disease[J]. J Inherit Metab Dis, 2020, 43(5): 908-921. doi: 10.1002/jimd.12228

  • 期刊类型引用(3)

    1. 胡巧巧,黄劼,王蕾,陈萌,刘宣言,张烨. 以心悸和全身神经性疼痛为首发表现的法布里病1例. 中华全科医师杂志. 2024(03): 300-302 . 百度学术
    2. 汪建兵,王雅玲,马钰滢,张建明. 以心室肥厚、蛋白尿为主要表现的法布雷病4例. 中国循证心血管医学杂志. 2024(06): 752-753 . 百度学术
    3. 张欣欣,张文,聂晓瑛,许莹,孔德莹,李汶嘉,郭咿玮,张蓓蕾,王彬翀. 1885例罕见病住院患者特征分析. 现代医院. 2024(12): 1916-1920 . 百度学术

    其他类型引用(0)

图(1)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  221
  • PDF下载量:  73
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-01-01
  • 录用日期:  2023-01-07
  • 网络出版日期:  2023-03-06
  • 刊出日期:  2023-01-29

目录

/

返回文章
返回
x 关闭 永久关闭