Citation: | HUANG Yumeng, LIU Ming. Classification, Diagnosis and Management Status of Carbohydrate Metabolic Rare Disorders[J]. Journal of Rare Diseases, 2023, 2(3): 325-330. DOI: 10.12376/j.issn.2097-0501.2023.03.002 |
Approximately 30%-40% of rare diseases are related to the endocrine and metabolic system, and abnormal metabolism of carbohydrate accounts for a significant proportion among others. Carbohydrate metabolic rare disorders often develop insidiously. The clinical symptoms of these disorders sometimes overlap with common diseases. Therefore, delayed diagnosis, misdiagnosis, and mismanagement happen often. The diagnosis and treatment of carbohydrate metabolic rare disorders is usually difficult in clinical practice. Efficient and practical screening models, identification of specific clinical features and biochemical changes, and genomic sequencing are critical to improve diagnostic efficiency. Most carbohydrate metabolic rare disorders are still lack in effective and targeted therapies. So, the symptomatic treatment is still main practice. The targeted medications and gene therapies based on precision diagnosis are directions for the diagnosis and management of rare disorders of carbohydrate metabolism in the future. In this paper, we classify the carbohydrate metabolic rare disorders based on their causes. We also discuss the current status and prospective of diagnosis and management of those diseases.
[1] |
Haendel M, Vasilevsky N, Unni D, et al. How many rare diseases are there?[J]. Nat Rev Drug Discov, 2020, 19(2): 77-78. doi: 10.1038/d41573-019-00180-y
|
[2] |
人民网. 《中国罕见病定义研究报告2021》发布[EB/OL]. (2021-09-13)[2022-10-15]. health.people.com.cn/n1/2021/0913/c14739-32225468.html.
|
[3] |
王朝霞. 基于北京市三级甲等医院住院患者数据的罕见病调查研究[R]. 北京: 北京第四届北京罕见病学术暨2016京津冀罕见病学术大会, 2016.
|
[4] |
张抒扬, 董咚. 2020中国罕见病综合社会调研[M]. 北京: 人民卫生出版社, 2020.
|
[5] |
中国医师协会内分泌代谢科医师分会, 国家代谢性疾病临床医学研究中心. 糖尿病分型诊断中国专家共识[J]. 中华糖尿病杂志, 2022, 14(2): 120-139.
|
[6] |
Gupsilonemes M, Rahman SA, Kapoor RR, et al. Hyperinsulinemic hypoglycemia in children and adolescents: recent advances in understanding of pathophysiology and management[J]. Rev Endocr Metab Disord, 2020, 21(4): 577-597. doi: 10.1007/s11154-020-09548-7
|
[7] |
Flannick J, Johansson S, Njolstad PR. Common and rare forms of diabetes mellitus: towards a continuum of diabetes subtypes[J]. Nat Rev Endocrinol, 2016, 12(7): 394-406. doi: 10.1038/nrendo.2016.50
|
[8] |
Tattersall RB. Mild familial diabetes with dominant inheritance[J]. Q J Med, 1974, 43(170): 339-357.
|
[9] |
Fajans SS, Cloutier MC, Crowther RL. The banting memorial lecture 1978. Clinical and etiologic heterogeneity of idiopathic diabetes mellitus[J]. Diabetes, 1978, 27(11): 1112-1125. doi: 10.2337/diab.27.11.1112
|
[10] |
Froguel P, Zouali H, Vionnet N, et al. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus[J]. N Engl J Med, 1993, 328(10): 697-702. doi: 10.1056/NEJM199303113281005
|
[11] |
Vaxillaire M, Boccio V, Philippi A, et al. A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q[J]. Nat Genet, 1995, 9(4): 418-423. doi: 10.1038/ng0495-418
|
[12] |
Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes[J]. N Engl J Med, 2004, 350(18): 1838-1849. doi: 10.1056/NEJMoa032922
|
[13] |
Sagen JV, Raeder H, Hathout E, et al. Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy[J]. Diabetes, 2004, 53(10): 2713-2718. doi: 10.2337/diabetes.53.10.2713
|
[14] |
Stoy J, Edghill EL, Flanagan SE, et al. Insulin gene mutations as a cause of permanent neonatal diabetes[J]. Proc Natl Acad Sci USA, 2007, 104(38): 15040-15044. doi: 10.1073/pnas.0707291104
|
[15] |
Colombo C, Porzio O, Liu M, et al. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus[J]. J Clin Invest, 2008, 118(6): 2148-2156.
|
[16] |
Zhang H, Colclough K, Gloyn AL, et al. Monogenic diabetes: a gateway to precision medicine in diabetes[J]. J Clin Invest, 2021, 131(3): e142244. doi: 10.1172/JCI142244
|
[17] |
Feingold KR, Anawalt B, Blackman MR, et al. Atypical forms of diabetes[M]. South Dartmouth (MA): MDText. com, Inc., 2000.
|
[18] |
Wilder RM, Allan FN, Power MH, et al. Carcinoma of the islands of the pancreas: hyperinsulinism and hypoglycemia[J]. JAMA, 1927, 89(5): 348-355. doi: 10.1001/jama.1927.02690050014007
|
[19] |
Hinrichs A, Renner S, Bidlingmaier M, et al. Mechanisms in endocrinology: transient juvenile hypoglycemia in growth hormone receptor deficiency-mechanistic insights from Laron syndrome and tailored animal models[J]. Eur J Endocrinol, 2021, 185(2): R35-R47. doi: 10.1530/EJE-21-0013
|
[20] |
Garla V, Sonani H, Palabindala V, et al. Non-islet cell hypoglycemia: case series and review of the literature[J]. Front Endocrinol (Lausanne), 2019, 10: 316. doi: 10.3389/fendo.2019.00316
|
[21] |
Weinstein DA, Steuerwald U, De Souza CFM, et al. Inborn errors of metabolism with hypoglycemia: glycogen storage diseases and inherited disorders of gluconeogenesis[J]. Pediatr Clin North Am, 2018, 65(2): 247-265. doi: 10.1016/j.pcl.2017.11.005
|
[22] |
Douillard C, Jannin A, Vantyghem MC. Rare causes of hypoglycemia in adults[J]. Ann Endocrinol (Paris), 2020, 81(2-3): 110-117. doi: 10.1016/j.ando.2020.04.003
|
[23] |
黄雨蒙, 舒画, 刘铭. 六种常见单基因糖尿病的临床特征及个体化精准诊疗[J]. 中华内分泌代谢杂志, 2019, 35(2): 165-170. doi: 10.3760/cma.j.issn.1000-6699.2019.02.015
|
[24] |
张仪, 王剑. 基因组医学时代罕见病的诊治进展[J]. 中华内分泌代谢杂志, 2019, 35(9): 813-817. doi: 10.3760/cma.j.issn.1000-6699.2019.09.017
|
[25] |
Brea-Fernandez AJ, Alvarez-Barona M, Amigo J, et al. Trio-based exome sequencing reveals a high rate of the de-novo variants in intellectual disability[J]. Eur J Hum Genet, 2022, 30(8): 938-945. doi: 10.1038/s41431-022-01087-w
|
[26] |
Pearson ER, Flechtner I, Njolstad PR, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations[J]. N Engl J Med, 2006, 355(5): 467-477. doi: 10.1056/NEJMoa061759
|
[27] |
Beltrand J, Elie C, Busiah K, et al. Sulfonylurea therapy benefits neurological and psychomotor functions in patients with neonatal diabetes owing to potassium channel mutations[J]. Diabetes Care, 2015, 38(11): 2033-2041. doi: 10.2337/dc15-0837
|
[28] |
国家卫生健康委办公厅. 关于印发罕见病诊疗指南(2019年版)的通知[EB/OL]. (2019-09-27)[2023-02-27]. https://app.www.gov.cn/govdata/gov/201902/28/436051/article.html.
|
[29] |
中国网. 《2023中国罕见病行业趋势观察报告》发布-罕见病药物70%已纳入医保[EB/OL]. (2023-02-28)[2023-05-15]. health.china.com.cn/2023-02/28/content_42275429.htm.
|
[30] |
Yilmaz BS, Gurung S, Perocheau D, et al. Gene therapy for inherited metabolic diseases[J]. J Mother Child, 2020, 24(2): 53-64.
|
[31] |
Laufer R, Aiach K, Chakrapani A, et al. Update on AAVance, a phase 2/3 Clinical Trial of LYS-SAF302 Gene Therapy in Children with MPS ⅢA[J]. Hum Gene Ther, 2022, 33(23-24): A71.
|
[32] |
Maxwell KG, Augsornworawat P, Velazco-Cruz L, et al. Gene-edited human stem cell-derived beta cells from a patient with monogenic diabetes reverse preexisting diabetes in mice[J]. Sci Transl Med, 2020, 12(540): eaax9106. doi: 10.1126/scitranslmed.aax9106
|