WANG Wenqing, ZHAO Yuying, YAN Chuanzhu. Congenital Myasthenic Syndrome[J]. Journal of Rare Diseases, 2022, 1(2): 110-121. DOI: 10.12376/j.issn.2097-0501.2022.02.004
Citation: WANG Wenqing, ZHAO Yuying, YAN Chuanzhu. Congenital Myasthenic Syndrome[J]. Journal of Rare Diseases, 2022, 1(2): 110-121. DOI: 10.12376/j.issn.2097-0501.2022.02.004

Congenital Myasthenic Syndrome

Funds: 

General Program of National Natural Science Foundation of China 82071412

General Program of Shandong Natural Science Foundation ZR2021MH170

More Information
  • Corresponding author:

    ZHAO Yuying, E-mail: zyy72@126.com

  • Received Date: March 09, 2022
  • Accepted Date: March 25, 2022
  • Available Online: June 01, 2022
2097-0501/©2022 Editorial Office of Journal of Rare Diseases This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
  • Congenital Myasthenic syndrome (CMS) is a group of partially treatable genetic disorders characterized by dysfunction of neuromuscular junction signaling.With the popularization of high-throughput sequencing and in-depth understanding of the disease in recent years, more than thirty pathogenic genes have been discovered and there is a correlation between genotype and clinical phenotype.Misdiagnosis and missed diagnosis are common in clinical practice. This paper summarized the molecular mechanisms, clinical features, electrophysiologic, pathological features and treatment of main subtypes of CMS to deepen the understanding of the disease.

  • [1]
    Finlayson S, Beeson D, Palace J, et al. Congenital myasthenic syndromes: an update[J]. Pract Neurol, 2013, 13: 80-91. doi: 10.1136/practneurol-2012-000404
    [2]
    Engel AG, Edward HL, Manuel RG, et al. A new myas-thenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release[J]. Ann Neurol, 1977, 1: 315-330. doi: 10.1002/ana.410010403
    [3]
    Engel AG. Congenital myasthenic syndromes[J]. Neurol Clin, 1994, 12: 401-437. doi: 10.1016/S0733-8619(18)30104-X
    [4]
    Shen XM, Crawford TO, Brengman J, et al. Functional consequences and structural interpretation of mutations of human choline acetyltransferase[J]. Hum Mutat, 2011, 32: 1259-1267. doi: 10.1002/humu.21560
    [5]
    Byring RF, Pihko H, Tsujino A, et al. Congenital myasthenic syndrome associated with episodic apnea and sudden infant death[J]. Neuromuscul Disord, 2002, 12: 548-553. doi: 10.1016/S0960-8966(01)00336-4
    [6]
    Ricardo AM, Darlene C, Delores M, et al. Choline acetyltransferase mutations in myathenic syndrome due to deficient acetylcholine resynthesis[J]. Muscle Nerve, 2003, 27: 180-187. doi: 10.1002/mus.10300
    [7]
    Schara U, Christen HJ, Durmus H, et al. Long-term follow-up in patients with congenital myasthenic syndrome due to CHAT mutations[J]. Eur J Paediatr Neurol, 2010, 14: 326-333. doi: 10.1016/j.ejpn.2009.09.009
    [8]
    Sudhof TC. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle[J]. Neuron, 2013, 80: 675-690. doi: 10.1016/j.neuron.2013.10.022
    [9]
    Shen XM, Selcen D, Brengman J, et al. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability[J]. Neurology, 2014, 83: 2247-2255. doi: 10.1212/WNL.0000000000001079
    [10]
    Herrmann DN, Horvath R, Sowden JE, et al. Synaptotagmin 2 mutations cause an autosomal-dominant form of lambert-eaton myasthenic syndrome and nonprogressive motor neuro-pathy[J]. Am J Hum Genet, 2014, 95: 332-339. doi: 10.1016/j.ajhg.2014.08.007
    [11]
    Mihaylova V, Muller JS, Vilchez JJ, et al. Clinical and molecular genetic findings in COLQ-mutant congenital myas-thenic syndromes[J]. Brain, 2008, 131: 747-759. doi: 10.1093/brain/awm325
    [12]
    Maselli RA, Ng JJ, Anderson JA, et al. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome[J]. J Med Genet, 2009, 46: 203-208.
    [13]
    Logan CV, Cossins J, Rodriguez Cruz PM, et al. Congenital myasthenic syndrome type 19 is caused by mutations in COL13A1, encoding the atypical non-fibrillar collagen type ⅩⅢ alpha1 chain[J]. Am J Hum Genet, 2015, 97: 878-885. doi: 10.1016/j.ajhg.2015.10.017
    [14]
    Engel AG. Genetic basis and phenotypic features of cong-enital myasthenic syndromes[J]. Handb Clin Neurol, 2018, 148: 565-589.
    [15]
    Engel AG, Shen XM, Selcen D, et al. Congenital myas-thenic syndromes: pathogenesis, diagnosis, and treatment[J]. Lancet Neurol, 2015, 14: 420-434. doi: 10.1016/S1474-4422(14)70201-7
    [16]
    Harper CM, Fukodome T, Engel AG, et al. Treatment of slow-channel congenital myasthenic syndrome with fluoxet-ine[J]. Neurology, 2003, 60: 1710-1713. doi: 10.1212/01.WNL.0000061483.11417.1B
    [17]
    Rodriguez Cruz PM, Palace J, Beeson D. The neuromu-scular junction and wide heterogeneity of congenital myasthenic syndromes[J]. Int J Mol Sci, 2018, 19: 1677. doi: 10.3390/ijms19061677
    [18]
    Shen XM, Brengman JM, Edvardson S, et al. Highly fatal fast-channel syndrome caused by AChR ε subunit mutation at the agonist binding site[J]. Neurology, 2012, 79: 449-454. doi: 10.1212/WNL.0b013e31825b5bda
    [19]
    Habbout K, Poulin H, Rivier F, et al. A recessive Nav1.4 mutation underlies congenital myasthenic syndrome with periodic paralysis[J]. Neurology, 2016, 86: 161-169. doi: 10.1212/WNL.0000000000002264
    [20]
    Burden SJ, Yumoto N, Zhang W. The role of MuSK in synapse formation and neuromuscular disease[J]. CSH Perspect Biol, 2013, 5: a009167-a009167.
    [21]
    Maselli RA, Fernandez JM, Arredondo J, et al. LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin[J]. Hum Genet, 2012, 131: 1123-1135. doi: 10.1007/s00439-011-1132-4
    [22]
    Nicole S, Chaouch A, Torbergsen T, et al. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy[J]. Brain, 2014, 137: 2429-2443. doi: 10.1093/brain/awu160
    [23]
    Ohkawara B, Cabrera-Serrano M, Nakata T, et al. LRP4 third beta-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner[J]. Hum Mol Genet, 2014, 23: 1856-1868. doi: 10.1093/hmg/ddt578
    [24]
    Maselli RA, Arredondo J, Cagney O, et al. Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction[J]. Hum Mol Genet, 2010, 19: 2370-2379. doi: 10.1093/hmg/ddq110
    [25]
    Maggi L, Brugnoni R, Scaioli V, et al. Marked phenotypic variability in two siblings with congenital myasthenic syndrome due to mutations in MUSK[J]. J Neurol, 2013. doi: 10.1007/S00415-013-7118-5.
    [26]
    Cossins J, Burke G, Maxwell S, et al. Diverse molecular mechanisms involved in AChR deficiency due to rapsyn mutations[J]. Brain, 2006, 129: 2773-2783. doi: 10.1093/brain/awl219
    [27]
    Müller JS, Mildner G, Müller-Felber W, et al. Rapsyn N88K is a frequent cause of congenital myasthenic syndromes in European patients[J]. Neurology, 2003, 60: 1805-1810. doi: 10.1212/01.WNL.0000072262.14931.80
    [28]
    Ohno K, Sadeh M, Blatt I, et al. E-box mutations in the RAPSN promoter region in eight cases with congenital myasthenic syndrome[J]. Hum Mol Genet, 2003, 12: 739-748. doi: 10.1093/hmg/ddg089
    [29]
    Banwell BL, Ohno K, Sieb JP, et al. Novel truncating RAPSN mutations causing congenital myasthenic syndrome responsive to 3, 4-diaminopyridine[J]. Neuromuscul Disord, 2004, 14: 202-207. doi: 10.1016/j.nmd.2003.11.004
    [30]
    Forrest K, Mellerio JE, Robb S, et al. Congenital muscular dystrophy, myasthenic symptoms and epidermolysis bullosa simplex (EBS) associated with mutations in the PLEC1 gene encoding plectin[J]. Neuromuscul Disord, 2010, 20: 709-711. doi: 10.1016/j.nmd.2010.06.003
    [31]
    Wurde AE, Reunert J, Rust S, et al. Congenital disorder of glycosylation type Ij (CDG-Ij, DPAGT1-CDG): extending the clinical and molecular spectrum of a rare disease[J]. Mol Genet Metab, 2012, 105: 634-641. doi: 10.1016/j.ymgme.2012.01.001
    [32]
    Belaya K, Finlayson S, Cossins J, et al. Identification of DPAGT1 as a new gene in which mutations cause a congenital myasthenic syndrome[J]. Ann N Y Acad Sci, 2012, 1275: 29-35. doi: 10.1111/j.1749-6632.2012.06790.x
    [33]
    Belaya K, Finlayson S, Slater CR, et al. Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syn-drome with tubular aggregates[J]. Am J Hum Genet, 2012, 91: 193-201. doi: 10.1016/j.ajhg.2012.05.022
    [34]
    Senderek J, Muller JS, Dusl M, et al. Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect[J]. Am J Hum Genet, 2011, 88: 162-172. doi: 10.1016/j.ajhg.2011.01.008
    [35]
    Cossins J, Belaya K, Hicks D, et al. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14[J]. Brain, 2013, 136: 944-956. doi: 10.1093/brain/awt010
    [36]
    Guergueltcheva V, Muller JS, Dusl M, et al. Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations[J]. J Neurol, 2012, 259: 838-850. doi: 10.1007/s00415-011-6262-z
    [37]
    Klein A, Robb S, Rushing E, et al. Congenital myasthenic syndrome caused by mutations in DPAGT[J]. Neuromuscul Disord, 2015, 25: 253-256. doi: 10.1016/j.nmd.2014.11.013
    [38]
    Belaya K, Rodriguez Cruz PM, Liu WW, et al. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies[J]. Brain, 2015, 138: 2493-2504. doi: 10.1093/brain/awv185
    [39]
    Worman HJ, Dauer WT. The nuclear envelope: an intriguing focal point for neurogenetic disease[J]. Neurotherapeutics, 2014, 11: 764-772. doi: 10.1007/s13311-014-0296-8
    [40]
    Cossins J, Webster R, Maxwell S, et al. Congenital myasthenic syndrome due to a TOR1AIP1 mutation: a new disease pathway for impaired synaptic transmission[J]. Brain Commun, 2020, 2: 174. doi: 10.1093/braincomms/fcaa174
    [41]
    Chaouch A, Porcelli V, Cox D, et al. Mutations in the mitochondrial citrate carrier SLC25A1 are associated with impaired neuromuscular transmission[J]. J Neuromuscul Dis, 2014, 1: 75-90. doi: 10.3233/JND-140021
    [42]
    Ding Q, Shen D, Dai Y, et al. Mechanism hypotheses for the electrophysiological manifestations of two cases of endplate acetylcholinesterase deficiency related congenital myasthenic syndrome[J]. J Clin Neurosci, 2018, 48: 229-232. doi: 10.1016/j.jocn.2017.10.084
    [43]
    Salih MA, Oystreck DT, Al-Faky YH, et al. Congenital myasthenic syndrome due to homozygous CHRNE mutations: report of patients in Arabia[J]. J Neuroophthalmol, 2011, 31: 42-47. doi: 10.1097/WNO.0b013e3181f50bea
    [44]
    Schiaffino S. Tubular aggregates in skeletal muscle: just a special type of protein aggregates? [J]. Neuromuscul Disord, 2012, 22: 199-207. doi: 10.1016/j.nmd.2011.10.005
    [45]
    Bohm J, Chevessier F, Koch C, et al. Clinical, histological and genetic characterisation of patients with tubular aggregate myopathy caused by mutations in STIM1[J]. J Med Genet, 2014, 51: 824-833. doi: 10.1136/jmedgenet-2014-102623
    [46]
    Soboloff J, Rothberg BS, Madesh M, et al. STIM proteins: dynamic calcium signal transducers[J]. Nat Rev Mol Cell Biol, 2012, 13: 549-565. doi: 10.1038/nrm3414
    [47]
    Engel AG. Congenital myasthenic syndromes in 2018[J]. Curr Neurol Neurosci Rep, 2018, 18: 46. doi: 10.1007/s11910-018-0852-4
    [48]
    Salzberg SL, Pertea M, Fahrner JA, et al. DIAMUND: direct comparison of genomes to detect mutations[J]. Hum Mutat, 2014, 35: 283-288. doi: 10.1002/humu.22503
    [49]
    Luo S, Cai S, Maxwell S, et al. Novel mutations in the C-terminal region of GMPPB causing limb-girdle muscular dystrophy overlapping with congenital myasthenic syndrome[J]. Neuromuscul Disord, 2017, 27: 557-564. doi: 10.1016/j.nmd.2017.03.004
    [50]
    Farmakidis C, Pasnoor M, Barohn RJ, et al. Congenital myasthenic syndromes: a clinical and treatment approach[J]. Curr Treat Options Neurol, 2018, 20: 36. doi: 10.1007/s11940-018-0520-7
    [51]
    Selcen D, Milone M, Shen XM, et al. Dok-7 myasthenia: phenotypic and molecular genetic studies in 16 patients[J]. Ann Neurol, 2008, 64: 71-87. doi: 10.1002/ana.21408
    [52]
    Beeson D. Congenital myasthenic syndromes: recent advances[J]. Curr Opin Neurol, 2016, 29: 565-571. doi: 10.1097/WCO.0000000000000370
    [53]
    肖婷, 吴丽文. 先天性肌无力综合征的诊治进展[J]. 中国当代儿科杂志, 2020, 22: 672-676. doi: 10.7499/j.issn.1008-8830.1912095
    [54]
    Tei S, Ishii HT, Mitsuhashi H, et al. Antisense oligonucleotide-mediated exon skipping of CHRNA1 pre-mRNA as potential therapy for congenital myasthenic syndromes[J]. Biochem Biophys Res Commun, 2015, 461: 481-486. doi: 10.1016/j.bbrc.2015.04.035
  • Related Articles

    [1]ZHANG Xuanling, CHEN Chaoyang, WEI Ran, ZHOU Ying. Advances in Disease-Modifying Therapy of Neuromyelitis Optic Spectrum Disorders[J]. Journal of Rare Diseases, 2024, 3(2): 246-251. DOI: 10.12376/j.issn.2097-0501.2024.02.015
    [2]WANG Xu, WANG Wenda, ZHAO Yang, WANG Zhan, LI Yanan, ZHANG Yushi. The Analysis of Clinical Features of 186 Cases of Tuberous Sclerosis Complex-Associated Renal Angiomyolipoma[J]. Journal of Rare Diseases, 2024, 3(1): 57-62. DOI: 10.12376/j.issn.2097-0501.2024.01.008
    [3]WANG Wenda, ZHANG Yushi. The Development and Current Status in the Diagnosis and Management of Tuberous Sclerosis Complex Associated with Renal Angiomyolipoma in China[J]. Journal of Rare Diseases, 2024, 3(1): 36-41. DOI: 10.12376/j.issn.2097-0501.2024.01.005
    [4]LI Ruohan, DU Liping, JIE Hengbo, MEI Dan. Exploring the Accessibility by Using the Hydroxycobalamin Preparations of High Concentration in Treating Methylmalonic Acidemia[J]. Journal of Rare Diseases, 2023, 2(3): 406-413. DOI: 10.12376/j.issn.2097-0501.2023.03.011
    [5]HU Tingting, GUO Lilin, ZHU Yuanyuan, TIAN Zhuang. Imaging Characteristics of Primary Cardiac Angiosarcoma[J]. Journal of Rare Diseases, 2023, 2(1): 88-97. DOI: 10.12376/j.issn.2097-0501.2023.01.012
    [6]CHEN Peipei, TIAN Zhuang, CHEN Wei, MA Mingsheng, LIU Xin, QIN Yan, XU Haifeng, ZHU Zhijun, ZHANG Shuyang. A Case Report of Homozygous Familial Hypercholesterolemia Liver Transplantation[J]. Journal of Rare Diseases, 2023, 2(1): 55-62. DOI: 10.12376/j.issn.2097-0501.2023.01.008
    [7]FENG Siqin, TANG Muyun, WU Wei, ZHANG Shuyang. Familial Hypercholesterolemia[J]. Journal of Rare Diseases, 2023, 2(1): 6-16. DOI: 10.12376/j.issn.2097-0501.2023.01.002
    [8]GUO Xinjuan, DING Xiaoling, LI Dongshuang, LI Jun. Practical Guidance for Ultrasonic Evaluation of Hemophilic Arthropathy[J]. Journal of Rare Diseases, 2022, 1(4): 449-455. DOI: 10.12376/j.issn.2097-0501.2022.04.015
    [9]HAN Weimin, CHANG Xiaoli, HU Ronghua, SUN Wanling. A Case of Chronic Myelomonocytic Leukemia: the Onset of which was Manifestedby Hypokalemia and Hypocalcemia[J]. Journal of Rare Diseases, 2022, 1(4): 446-448. DOI: 10.12376/j.issn.2097-0501.2022.04.014
    [10]REN Chao, TIAN Zhuang, HE Shan, WANG Xuezhu, HAO Zhixin, DING Jie, ZHANG Shuyang, HUO Li. Consensus to 99mTechnetium-Pyrophosphate Scintigraphy in the Diagnosis of Transthyretin-related Cardiac Amyloidosis[J]. Journal of Rare Diseases, 2022, 1(1): 72-77. DOI: 10.12376/j.issn.2097-0501.2022.01.012

Catalog

    Article views (640) PDF downloads (129) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return