Citation: | Rare Disease Society of Chinese Research Hospital Association, China Alliance for Rare Diseases, Beijing Society of Rare Disease Clinical Care and Accessibility, China Expert Group for Clinical Practice Guideline for Adolescent & Adult Patients with Spinal Muscular Atrophy. Clinical Practice Guideline for Adolescent & Adult Patients with Spinal Muscular Atrophy[J]. Journal of Rare Diseases, 2023, 2(3): 377-397. DOI: 10.12376/j.issn.2097-0501.2023.03.009 |
In recent years, spinal muscular atrophy (SMA) has made progress in multidisciplinary treatment and disease-modifying therapeutic drugs, so that the progress has significantly improved the survival and quality of life of the patients. However, no clinical practice guideline has developed for the management of SMA in adults and adolescents patients. Experts of multidisciplinary from a number of tertiary medical centers in China who specialize in the diagnosis and treatment of SMA have come to an agreement based on the evidence-based medicine. This guideline serves as instrumental reference for the standardized care of the Chinese SMA patients.
[1] |
Corsello A, Scatigno L, Pascuzzi MC, et al. Nutritional, gastrointestinal and endo-metabolic challenges in the management of children with spinal muscular atrophy type 1[J]. Nutrients, 2021, 13(7): 2400. doi: 10.3390/nu13072400
|
[2] |
Wasserman HM, Hornung LN, Stenger PJ, et al. Low bone mineral density and fractures are highly prevalent in pediatric patients with spinal muscular atrophy regardless of disease severity[J]. Neuromuscul Disord, 2017, 27(4): 331-337. doi: 10.1016/j.nmd.2017.01.019
|
[3] |
Kilpinen-Loisa P, Paasio T, Soiva M, et al. Low bone mass in patients with motor disability: prevalence and risk factors in 59 finnish children[J]. Dev Med Child Neurol, 2010, 52(3): 276-282. doi: 10.1111/j.1469-8749.2009.03464.x
|
[4] |
Bonewald L. Use it or lose it to age: a review of bone and muscle communication[J]. Bone, 2019, 120: 212-218. doi: 10.1016/j.bone.2018.11.002
|
[5] |
Li G, Zhang L, Wang D, et al. Muscle-bone crosstalk and potential therapies for sarco-osteoporosis[J]. J Cell Biochem, 2019, 120(9): 14262-14273. doi: 10.1002/jcb.28946
|
[6] |
中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022)[J]. 中华骨质疏松和骨矿盐疾病杂志, 2022, 15(6): 573-611. doi: 10.3969/j.issn.1674-2591.2022.06.001
|
[7] |
Yu F, Xu Y, Hou Y, et al. Age-, site-, and sex-specific normative centile curves for hr-pqct-derived microarchitectural and bone strength parameters in a Chinese mainland population[J]. J Bone Miner Res, 2020, 35(11): 2159-2170. doi: 10.1002/jbmr.4116
|
[8] |
Peng X, Qu Y, Li X, et al. Bone mineral density and its influencing factors in Chinese children with spinal muscular atrophy types 2 and 3[J]. BMC Musculoskelet Disord, 2021, 22(1): 729. doi: 10.1186/s12891-021-04613-x
|
[9] |
Vai S, Bianchi ML, Moroni I, et al. Bone and spinal muscular atrophy[J]. Bone, 2015, 79: 116-120. doi: 10.1016/j.bone.2015.05.039
|
[10] |
Shanmugarajan S, Tsuruga E, Swoboda KJ, et al. Bone loss in survival motor neuron (Smn(-/-) SMN2) genetic mouse model of spinal muscular atrophy[J]. J Pathol, 2009, 219(1): 52-60. doi: 10.1002/path.2566
|
[11] |
中华医学会骨质疏松和骨矿盐疾病分会. 骨转换生化标志物临床应用指南[J]. 中华骨质疏松和骨矿盐疾病杂志, 2021, 14(4): 321-336. doi: 10.3969/j.issn.1674-2591.2021.04.001
|
[12] |
中华医学会骨质疏松和骨矿盐疾病分会. 维生素D及其类似物临床应用共识[J]. 中华骨质疏松和骨矿盐疾病杂志, 2018, 11(1): 1-19. doi: 10.3969/j.issn.1674-2591.2018.01.001
|
[13] |
中国营养学会. 中国居民膳食营养素参考摄入量(2013版)[M]. 北京: 科技出版社, 2014.
|
[14] |
Nasomyont N, Hornung LN, Wasserman H. Intravenous bisphosphonate therapy in children with spinal muscular atrophy[J]. Osteoporos Int, 2020, 31(5): 995-1000. doi: 10.1007/s00198-019-05227-9
|
[15] |
Kutilek S. Denosumab treatment of severe disuse osteoporosis in a boy with spinal muscular atrophy[J]. Acta Med Iran, 2017, 55(10): 658-660.
|
[16] |
Nasomyont N, Keefe C, Tian C, et al. Safety and efficacy of teriparatide treatment for severe osteoporosis in patients with Duchenne muscular dystrophy[J]. Osteoporos Int, 2020, 31(12): 2449-2459. doi: 10.1007/s00198-020-05549-z
|
[17] |
Bruce AK, Jacobsen E, Dossing H, et al. Hypoglycaemia in spinal muscular atrophy[J]. Lancet, 1995, 346(8975): 609-610. doi: 10.1016/S0140-6736(95)91439-0
|
[18] |
Berti B, Onesimo R, Leone D, et al. Hypoglycaemia in patients with type 1 SMA: an underdiagnosed problem?[J]. Arch Dis Child, 2020, 105(7): 707. doi: 10.1136/archdischild-2019-318120
|
[19] |
Ørngreen MC, Andersen AG, Eisum AS, et al. Prolonged fasting-induced hyperketosis, hypoglycaemia and impaired fat oxidation in child and adult patients with spinal muscular atrophy type Ⅱ[J]. Acta Paediatr, 2021, 110(12): 3367-3375. doi: 10.1111/apa.16074
|
[20] |
Nery FC, Siranosian JJ, Rosales I, et al. Impaired kidney structure and function in spinal muscular atrophy[J]. Neurol Genet, 2019, 5(5): e353. doi: 10.1212/NXG.0000000000000353
|
[21] |
Djordjevic SA, Milic-Rasic V, Brankovic V, et al. Glucose and lipid metabolism disorders in children and adolescents with spinal muscular atrophy types 2 and 3[J]. Neuromuscul Disord, 2021, 31(4): 291-299. doi: 10.1016/j.nmd.2021.02.002
|
[22] |
Davis RH, Miller EA, Zhang RZ, et al. Responses to fasting and glucose loading in a cohort of well children with spinal muscular atrophy type Ⅱ[J]. J Pediatr, 2015, 167(6): 1362-1368.e1. doi: 10.1016/j.jpeds.2015.09.023
|
[23] |
Kölbel H, Hauffa BP, Wudy SA, et al. Hyperleptinemia in children with autosomal recessive spinal muscular atrophy type Ⅰ-Ⅲ[J]. PLoS One, 2017, 12(3): e0173144. doi: 10.1371/journal.pone.0173144
|
[24] |
Brener A, Sagi L, Shtamler A, et al. Insulin-like growth factor-1 status is associated with insulin resistance in young patients with spinal muscular atrophy[J]. Neuromuscul Disord, 2020, 30(11): 888-896. doi: 10.1016/j.nmd.2020.09.025
|
[25] |
Bowerman M, Swoboda KJ, Michalski JP, et al. Glucose metabolism and pancreatic defects in spinal muscular atrophy[J]. Ann Neurol, 2012, 72(2): 256-268. doi: 10.1002/ana.23582
|
[26] |
Lamarca NH, Golden L, John RM, et al. Diabetic ketoacidosis in an adult patient with spinal muscular atrophy type Ⅱ: further evidence of extraneural pathology due to survival motor neuron 1 mutation? [J]. J Child Neurol, 2013, 28(11): 1517-1520. doi: 10.1177/0883073812460096
|
[27] |
Li YJ, Chen TH, Wu YZ, et al. Metabolic and nutritional issues associated with spinal muscular atrophy[J]. Nutrients, 2020, 12(12): 3842. doi: 10.3390/nu12123842
|
[28] |
Deguise MO, Chehade L, Kothary R. Metabolic dysfunction in spinal muscular atrophy[J]. Int J Mol Sci, 2021, 22(11): 5913. doi: 10.3390/ijms22115913
|
[29] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4): 315-409. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYX202112018.htm
|
[30] |
Deguise MO, Baranello G, Mastella C, et al. Abnormal fatty acid metabolism is a core component of spinal muscular atrophy[J]. Ann Clin Transl Neurol, 2019, 6(8): 1519-1532. doi: 10.1002/acn3.50855
|
[31] |
Ripolone M, Ronchi D, Violano R, et al. Impaired muscle mitochondrial biogenesis and myogenesis in spinal muscular atrophy[J]. JAMA Neurol, 2015, 72(6): 666-675. doi: 10.1001/jamaneurol.2015.0178
|
[32] |
Tein I, Sloane AE, Donner EJ, et al. Fatty acid oxidation abnormalities in childhood-onset spinal muscular atrophy: primary or secondary defect(s)?[J]. Pediatr Neurol, 1995, 12(1): 21-30. doi: 10.1016/0887-8994(94)00100-G
|
[33] |
Brener A, Lebenthal Y, Shtamler A, et al. The endocrine manifestations of spinal muscular atrophy, a real-life observational study[J]. Neuromuscul Disord, 2020, 30(4): 270-276. doi: 10.1016/j.nmd.2020.02.011
|
[34] |
中华医学会消化病学分会. 2020年中国胃食管反流专家共识[J]. 中华消化杂志, 2020, 40(10): 649-663. doi: 10.3760/cma.j.cn311367-20200918-00558
|
[35] |
Schol J, Wauters L, Dickman R, et al. United European Gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on gastro-paresis[J]. United European Gastroenterol J, 2021, 9(3): 287-306. doi: 10.1002/ueg2.12060
|
[36] |
中华医学会消化病学分会胃肠动力学组, 功能性胃肠病协作组. 中国慢性便秘专家共识意见(2019, 广州)[J]. 中华消化杂志, 2019, 39(9): 577-598. doi: 10.3760/cma.j.issn.0254-1432.2019.09.001
|
[37] |
窦攀, 熊晖, 李融融, 等. 脊髓性肌萎缩症患者的营养管理[J]. 中国实用儿科杂志, 2022, 37(10): 748-754. doi: 10.19538/j.ek2022100608
|
[38] |
中华医学会肠外肠内营养学分会儿科协作组. 中国儿科肠内肠外营养支持临床应用指南[J]. 中华儿科杂志, 2010, 6: 436-441. doi: 10.3760/cma.j.issn.0578-1310.2010.06.008
|
[39] |
Mehta NM, Skillman HE, Irving SY, et al. Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: society of critical care medicine and American Society for Parenteral and Enteral Nutrition[J]. JPEN J Parenter Enteral Nutr, 2017, 41(5): 706-742. doi: 10.1177/0148607117711387
|
[40] |
McCarthy H, Dixon M, Crabtree I, et al. The development and evaluation of the Screening Tool for the Assessment of Malnutrition in Paediatrics (STAMP©) for use by healthcare staff[J]. J Hum Nutr Diet, 2012, 25(4): 311-318. doi: 10.1111/j.1365-277X.2012.01234.x
|
[41] |
Mehta NM, Newman H, Tarrant S, et al. Nutritional status and nutrient intake challenges in children with spinal muscular atrophy[J]. Pediatr Neurol, 2016, 57: 80-83. doi: 10.1016/j.pediatrneurol.2015.12.015
|
[42] |
北京医学会罕见病分会, 北京医学会医学遗传学分会, 北京医学会神经病学分会神经肌肉病学组, 等. 脊髓性肌萎缩症多学科管理专家共识[J]. 中华医学杂志, 2019, 99(19): 1460-1467. doi: 10.3760/cma.j.issn.0376-2491.2019.19.006
|
[43] |
Baranello G, De Amicis R, Arnoldi MT, et al. Evaluation of body composition as a potential biomarker in spinal muscular atrophy[J]. Muscle Nerve, 2020, 61(4): 530-534. doi: 10.1002/mus.26823
|
[44] |
中华医学会儿科学分会康复学组, 中国康复医学会物理治疗专委会. 脊髓性肌萎缩症康复管理专家共识[J]. 中华儿科杂志, 2022, 60(9): 883-887. doi: 10.3760/cma.j.cn112140-20220315-00201
|
[45] |
Turan Z, Topaloglu M, Ozyemisci TO. Medical research council-sumscore: a tool for evaluating muscle weakness in patients with post-intensive care syndrome[J]. Crit Care, 2020, 24(1): 562. doi: 10.1186/s13054-020-03282-x
|
[46] |
Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care[J]. Neuromuscul Disord, 2018, 28(2): 103-115. doi: 10.1016/j.nmd.2017.11.005
|
[47] |
Cuisset JM, Estournet B. Recommendations for the diagnosis and management of typical childhood spinal muscular atrophy[J]. Rev Neurol (Paris), 2012, 168(12): 902-909. doi: 10.1016/j.neurol.2012.07.020
|
[48] |
Finkel RS, Mercuri E, Meyer OH, et al. Diagnosis and management of spinal muscular atrophy: Part 2: pulmonary and acute care; medications, supplements and immuniza-tions; other organ systems; and ethics[J]. Neuromuscul Disord, 2018, 28(3): 197-207. doi: 10.1016/j.nmd.2017.11.004
|
[49] |
Romano C, van Wynckel M, Hulst J, et al. European Society for Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for the Evaluation and Treatment of Gastrointestinal and Nutritional Complications in Children With Neurological Impairment[J]. J Pediatr Gastroenterol Nutr, 2017, 65(2): 242-264. doi: 10.1097/MPG.0000000000001646
|
[50] |
Bertoli S, Amicis RD, Mastella C, et al. Spinal muscular atrophy, types Ⅰ and Ⅱ: what are the differences in body composition and resting energy expenditure? [J]. Clin Nutr, 2017, 36(6): 1674-1680. doi: 10.1016/j.clnu.2016.10.020
|
[51] |
汤庆娅, 冯一, 陶晔璇, 等. 中国儿科肠内肠外营养支持临床应用指南[J]. 中华儿科杂志, 2010, 48(6): 436-441. doi: 10.3760/cma.j.issn.0578-1310.2010.06.008
|
[52] |
中国吞咽障碍膳食营养管理专家共识组. 吞咽障碍膳食营养管理中国专家共识(2019版)[J]. 中华物理医学与康复杂志, 2019, 41(12): 881-888. doi: 10.3760/cma.j.issn.0254-1424.2019.12.001
|
[53] |
中国吞咽障碍康复评估与治疗专家共识组. 中国吞咽障碍评估与治疗专家共识(2017年版)[J]. 中华物理医学与康复杂志, 2018, 40(1): 1-10. doi: 10.3760/cma.j.issn.0254-1424.2018.01.001
|
[54] |
Cichero JA, Lam P, Steele CM, et al. Development of international terminology and definitions for texture-modified foods and thickened fluids used in dysphagia management: the IDDSI framework[J]. Dysphagia, 2017, 32(2): 293-314. doi: 10.1007/s00455-016-9758-y
|
[55] |
Martinez EE, Quinn N, Arouchon K, et al. Comprehensive nutritional and metabolic assessment in patients with spinal muscular atrophy: opportunity for an individualized approach[J]. Neuromuscul Disord, 2018, 28(6): 512-519. doi: 10.1016/j.nmd.2018.03.009
|
[56] |
Williams CL, Bollella M, Wynder EL. A new recommenda-tion for dietary fiber in childhood[J]. Pediatrics, 1995, 96(5 Pt 2): 985-988.
|
[57] |
Yang J, Wang HP, Zhou L, Xu CF. Effect of dietary fiber on constipation: a meta analysis[J]. World J Gastroenterol, 2012, 18(48): 7378-7383. doi: 10.3748/wjg.v18.i48.7378
|
[58] |
Farrar MA, Park SB, Vucic S, et al. Emerging therapies and challenges in spinal muscular atrophy[J]. Ann Neurol, 2017, 81 (3): 355-366. doi: 10.1002/ana.24864
|
[59] |
Korinthenberg R, Sauer M, Ketelsen UP, et al. Congenital axonal neuropathy caused by deletions in the spinal muscular atrophy region[J]. Ann Neurol, 1997, 42(3): 364-368. doi: 10.1002/ana.410420314
|
[60] |
Granger MW, Buschang PH, Throckmorton GS, et al. Masticatory muscle function in patients with spinal muscular atrophy[J]. Am J Orthod Dentofacial Orthop, 1999, 115(6): 697-702. doi: 10.1016/S0889-5406(99)70296-9
|
[61] |
Chi1 SI, Kim HJ, Seo KS, et al. Local anesthesia of the temporomandibular joint to reduce pain during mouth opening for dental treatment in a patient with spinal muscular atrophy[J]. J Dent Anesth Pain Med, 2016, 16(2): 137-140. doi: 10.17245/jdapm.2016.16.2.137
|
[62] |
Heul AMB, Eijk RPA, Wadman RI, et al. Mastication in patients with spinal muscular atrophy types 2 and 3 is characterized by abnormal efficiency, reduced endurance, and fatigue[J]. Dysphagia, 2022, 37(4): 715-723. doi: 10.1007/s00455-021-10351-y
|
[63] |
Bruggen HW, Engel-Hoek L, Pol WL, et al. Impaired mandibular function in spinal muscular atrophy type Ⅱ: need for early recognition[J]. J Child Neurol, 26(11): 1392-1396. doi: 10.1177/0883073811407696
|
[64] |
Wadman RI, Bruggen HW, Witkamp D, et al. Bulbar muscle MRI changes in patients with SMA with reduced mouth opening and dysphagia[J]. Neurology, 2014, 83(12): 1060-1066. doi: 10.1212/WNL.0000000000000796
|
[65] |
Cha TH, Oh DW, Shim JH. Noninvasive treatment strategy for swallowing problems related to prolonged nonoral feeding in spinal muscular atrophy type Ⅱ[J]. Dysphagia, 2010, 25(3): 261-264. doi: 10.1007/s00455-009-9269-1
|
[66] |
王晓, 杨晨, 孙菲, 等. 家庭吞咽训练计划对头颈部肿瘤放疗患者吞咽功能的效果[J]. 中国康复理论与实践, 2022, 28(2): 227-231. doi: 10.3969/j.issn.1006-9771.2022.02.014
|
[67] |
金春晓, 杨霖, 刘洋, 等. 颞下颌关节紊乱病与身体姿势的相关性研究进展[J]. 口腔医学, 2022, 42(4): 368-372. doi: 10.13591/j.cnki.kqyx.2022.04.017
|
[68] |
Morris EHL, Estilow T, Glanzman AM, et al. Improving temporomandibular range of motion in people with duchenne muscular dystrophy and spinal muscular atrophy[J]. Am J Occup Ther, 2020, 74(2): 7402205080p1-7402205080p10.
|
[69] |
Geary RS, Yu RZ, Levin AA. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides[J]. Curr Opin Investig Drugs, 2001, 2(4): 562-573.
|
[70] |
FDA. SPINRAZA(nusinersen) injection, for intrathecal use [EB/OL]. (2016-12-23)[2021-10-12]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/209531lbl.pdf.
|
[71] |
Chiriboga CA, Swoboda KJ, Darras BT, et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy[J]. Neurology, 2016, 86(10): 890-897. doi: 10.1212/WNL.0000000000002445
|
[72] |
Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy[J]. N Engl J Med, 2017, 377(18): 1723-1732. doi: 10.1056/NEJMoa1702752
|
[73] |
Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy[J]. N Engl J Med, 2018, 378(7): 625-635. doi: 10.1056/NEJMoa1710504
|
[74] |
Vivo DC, Bertini E, Swoboda KJ, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the Phase 2 NURTURE study[J]. Neuromuscul Disorder, 2019, 29(11): 842-856. doi: 10.1016/j.nmd.2019.09.007
|
[75] |
Darras BT, Chiriboga CA, Iannaccone ST, et al. Nusinersen in later-onset spinal muscular atrophy: long-term results from the phase 1/2 studies[J]. Neurology, 2019, 92(21): e2492-e2506. doi: 10.1212/WNL.0000000000007527
|
[76] |
Michelson D, Ciafaloni E, Ashwal S, et al. Evidence in focus: nusinersen use in spinal muscular atrophy: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology[J]. Neurology, 2018, 91(20): 923-933. doi: 10.1212/WNL.0000000000006502
|
[77] |
傅征然, 朱彦, 王晓玲, 等. 基于openFDA的诺西那生不良反应真实世界研究[J]. 中国医院药学杂志, 2021, 41(16): 1665-1669. doi: 10.13286/j.1001-5213.2021.16.12
|
[78] |
Sturm S, Nther AG, Jaber B, et al. A phase 1 healthy male volunteer single escalating dose study of the pharmaco-kinetics and pharmacodynamics of risdiplam (RG7916, RO7034067), a SMN2 splicing modifier[J]. Br J Clin Pharmacol, 2019, 85(1): 181-193. doi: 10.1111/bcp.13786
|
[79] |
韦石凤, 孙忠实, 赵志刚. 罕见病脊髓性肌萎缩症治疗新药利司扑兰的临床药理与应用[J]. 中国临床药理学杂志, 2022, 38(2): 171-174. doi: 10.13699/j.cnki.1001-6821.2022.02.016
|
[80] |
Cleary Y, Gertz M, Grimsey P, et al. Model-based drug-drug interaction extrapolation strategy from adults to children: risdiplam in pediatric patients with spinal muscular atrophy[J]. Clin Pharmacol Ther, 2021, 110(6): 1547-1557. doi: 10.1002/cpt.2384
|
[81] |
Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls[J]. N Engl J Med, 2021, 385(5): 427-435. doi: 10.1056/NEJMoa2102047
|
[82] |
Mercuri E, Baranello G, Boespflug-Tanguy O, et al. Risdiplam in types 2 and 3 spinal muscular atrophy: a randomised, placebo-controlled, dose-finding trial followed by 24 months of treatment[J]. Eur J Neurol, 2023, 30(7): 1945-1946. doi: 10.1111/ene.15499
|
[83] |
Mercuri E, Deconinck N, Mazzone ES, et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial[J]. Lancet Neurol, 2022, 21(1): 42-52. doi: 10.1016/S1474-4422(21)00367-7
|
[84] |
Cartwright MS, Upadhya S. Selecting disease-modifying medications in 5q spinal muscular atrophy[J]. Muscle Nerve, 2021, 64(4): 404-412. doi: 10.1002/mus.27358
|
[85] |
FDA. Evrysdi (risdiplam) prescribing information[EB/OL ]. (2022-05-23)[2022-07-17]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/213535s003s005lbl.pdf.
|
[86] |
ZOLGENSMA® (onasemnogene abeparvovec-xioi) suspension, for intravenous infusion Initial U.S. Approval: 2019. [EB/OL]. (2019-01-23)[2022-07-17]. https://www.zolgensma.com.
|
[87] |
Mendell JR, Al-Zaidy SA, Lehman KJ, et al. Five-year extension results of the phase 1 start trial of onasemnogene abeparvovec in spinal muscular atrophy[J]. JAMA Neurol, 2021, 78(7): 834-841. doi: 10.1001/jamaneurol.2021.1272
|
[88] |
Day JW, Finkel RS, Chiriboga CA, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial[J]. Lancet Neurol, 2021, 20(4): 284-293. doi: 10.1016/S1474-4422(21)00001-6
|
[89] |
Thomsen G, Burghes AHM, Hsieh C, et al. Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue[J]. Nature medicine, 2021, 27(10): 1701-1711. doi: 10.1038/s41591-021-01483-7
|
[90] |
Andrews JA, Miller TM, Vijayakumar V, et al. CK-2127107 amplifies skeletal muscle response to nerve activation in humans[J]. Muscle Nerve, 2018, 57(5): 729-734. doi: 10.1002/mus.26017
|
[91] |
Rudnicki SA, Andrews JA, Duong T, et al. Reldesemtiv in patients with spinal muscular atrophy: a phase 2 hypothesis-generating study[J]. Neurotherapeutics, 2021, 18(2): 1127-1136. doi: 10.1007/s13311-020-01004-3
|
[92] |
Pirruccello-Straub M, Jackson J, Wawersik S, et al. Blocking extracellular activation of myostatin as a strategy for treating muscle wasting[J]. Sci Rep, 2018, 8(1): 2292. doi: 10.1038/s41598-018-20524-9
|
[93] |
Cote SM, Jackson J, Pirruccello-Straub M, et al. A sensitive and selective immunoassay for the quantitation of serum latent myostatin after in vivo administration of srk-015, a selective inhibitor of myostatin activation [J]. SLAS Disco, 2020, 25(1): 95-103. doi: 10.1177/2472555219860779
|
[94] |
Long KK, O′Shea KM, Khairallah RJ, et al. Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy[J]. Hum Mol Genet, 2019, 28(7): 1076-1089. doi: 10.1093/hmg/ddy382
|
[95] |
Barrett D, Bilic S, Chyung Y, et al. A randomized phase 1 safety, pharmacokinetic and pharmacodynamic study of the novel myostatin inhibitor apitegromab (srk-015): a potential treatment for spinal muscular atrophy[J]. Adv Ther, 2021, 38(6): 3203-3222. doi: 10.1007/s12325-021-01757-z
|
[96] |
Scholar R. A phase 2 study to evaluate the efficacy and safety of srk-015 in patients with later-onset spinal muscular atrophy (topaz): an introduction[EB/OL]. (2020-07-12)[2023-02-17]. https://scholarrock.com/wp-content/uploads/2020/06/CureSMA_2020_TOPAZOralPresentation.pdf.
|
[97] |
Tiziano FD, Lomastro R, Pinto AM, et al. Salbutamol increases survival motor neuron (SMN) transcript levels in leucocytes of spinal muscular atrophy (SMA) patients: relevance for clinical trial design[J]. J Med Genet, 2010, 47(12): 856-858. doi: 10.1136/jmg.2010.080366
|
[98] |
Tiziano FD, Lomastro R, Abiusi E, et al. Longitudinal evaluation of SMN levels as biomarker for spinal muscular atrophy: results of a phase Ⅱb double-blind study of salbutamol[J]. J Med Genet, 2019, 56(5): 293-300. doi: 10.1136/jmedgenet-2018-105482
|
[99] |
Kinali M, Mercuri E, Main M, et al. Pilot trial of albuterol in spinal muscular atrophy[J]. Neurology, 2002, 59(4): 609-610. doi: 10.1212/WNL.59.4.609
|
[100] |
Pane M, Staccioli S, Messina S, et al. Daily salbutamol in young patients with SMA type Ⅱ[J]. Neuromuscul Disord, 2008, 18(7): 536-540. doi: 10.1016/j.nmd.2008.05.004
|
[101] |
Frongia AL, Natera-De BD, Ortez C, et al. Salbutamol tolerability and efficacy in patients with spinal muscular atrophy type Ⅱ[J]. Neuromuscul Disord, 2019, 29(7): 517-524. doi: 10.1016/j.nmd.2019.04.003
|
[102] |
Khirani S, Dabaj I, Amaddeo A, et al. Effect of salbutamol on respiratory muscle strength in spinal muscular atrophy[J]. Pediatr Neurol, 2017, 73: 78-87.e1. doi: 10.1016/j.pediatrneurol.2017.04.013
|
[1] | Hypothalamic and Pituitary Disease Group of China Alliance for Rare Diseases. Chinese Experts′ Consensus on the Management of Hypothalamic Obesity Secondary to Sellar Lesions[J]. Journal of Rare Diseases, 2024, 3(4): 479-491. DOI: 10.12376/j.issn.2097-0501.2024.04.011 |
[2] | CHEN Yu, LI Jianwei, TAN Huiwen, YU Yerong. A Case Report of Marfan Syndrome with Pituitary Tumor Which Could be Misdiagnosed as Gigantism[J]. Journal of Rare Diseases, 2024, 3(2): 237-240. DOI: 10.12376/j.issn.2097-0501.2024.02.013 |
[3] | JIN Yuanmeng, ZHANG Chunli, XU Jing, XIE Jingyuan. A Case Report of MYH9 Gene Mutation Associated with Glomerular Minor Lesion[J]. Journal of Rare Diseases, 2024, 3(1): 131-135. DOI: 10.12376/j.issn.2097-0501.2024.01.018 |
[4] | CAO Yaqing, GUO Baocheng, NIE Min. Genotype-Phenotype Correlation Analysis of WT1 Gene Variants in Denys-Drash Syndrome and Frasier Syndrome[J]. Journal of Rare Diseases, 2024, 3(1): 63-76. DOI: 10.12376/j.issn.2097-0501.2024.01.009 |
[5] | CHEN Dan, SUN Liying, ZHONG Wenyao, TIAN Wen. A Case Report of Nail-Patella Syndrome[J]. Journal of Rare Diseases, 2023, 2(4): 611-615. DOI: 10.12376/j.issn.2097-0501.2023.04.018 |
[6] | LI Guozhuang, XU Kexin, ZHAO Sen, ZHANG Jianguo, QIU Guixing, SUI Ruifang, WANG Tao, SHEN Min, ZENG Xuejun, WANG Wei, MA Mingsheng, WEI Min, LONG Xiao, LYU Ke, HUO Li, XUAN Lei, WU Nan. A Case Report of Blau Syndrome[J]. Journal of Rare Diseases, 2023, 2(4): 547-553. DOI: 10.12376/j.issn.2097-0501.2023.04.012 |
[7] | ZHAO Yuxing, DUAN Lian, LYU Wei, YAO Yong, YOU Hui, ZHANG Wen, MA Jin, MAO Xinxin, ZHU Huijuan. Rare Manifestations of Common Diseases: Middle-Aged Male Polyuria-Headache-Inflammatory Granulomatous Lesions[J]. Journal of Rare Diseases, 2023, 2(3): 359-364. DOI: 10.12376/j.issn.2097-0501.2023.03.007 |
[8] | Chinese Research Hospital Association- Children's Oncology Committee, FUTang Research Center of Pediatric Development- Children's Oncology Committee, FUTang Research Center of Pediatric Development- Children's Neurology Committee. Recommendations for Neuroblastoma Associated Opsoclonus-myoclonus-ataxia Syndrome in Childhood[J]. Journal of Rare Diseases, 2022, 1(3): 304-310. DOI: 10.12376/j.issn.2097-0501.2022.03.012 |
[9] | ZHONG Linqing, MA Mingsheng, SUI Ruifang, HONG Xia, FENG Feng, HUO Li, DAI Menghua, XU Qiang, SONG Hongmei. Multidisciplinary Treatment on a Case of ROSAH Syndrome[J]. Journal of Rare Diseases, 2022, 1(3): 289-295. DOI: 10.12376/j.issn.2097-0501.2022.03.010 |
[10] | HONG Yuehui, SHEN Min, WANG Tao, MA Mingsheng, ZHAO Sen, FENG Feng, ZHAO Dachun, ZHANG Wen, ZENG Xuejun, XUAN Lei, YAO Ming, ZHU Yicheng. An Adolescent with Recurrent Intracranial Hemorrhage, and Skin Lesion[J]. Journal of Rare Diseases, 2022, 1(2): 151-157. DOI: 10.12376/j.issn.2097-0501.2022.02.009 |
1. |
张牧秋,汪盛. 坏死松解性游走性红斑1例. 中国皮肤性病学杂志. 2025(01): 105-108 .
![]() |