Abstract:
Objective This study aimed at conducting retrospective analysis of the clinical symptoms and genetic mutations in 20 children with Gitelman syndrome treated at the Affiliated Children′s Hospital of Nanjing Medical University from August 2015 to November 2022 and also explored the molecular mechanism of the pathogenic high-frequency mutation D486N in the Chinese population.
Methods We collected the clinical manifestations, growth and development status, laboratory examination results, and SLC12A3 gene variations of the patients. We distinguished the wild-type and mutant SLC12A3 genes overexpressed in human embryonic kidney 293T cells (HEK293T). We used protein immunoblotting to detect the expression level of NCC, and used immunofluorescence techniques to examine the subcellular localization of NCC. In addition, we investigated the impact of the high-frequency SLC12A3 gene mutation D486N on NCC protein expression and localization.
Results In the 20 patients with Gitelman syndrome, all of them had hypokalemia. We indemnified twenty-six SLC12A3 gene mutations, 13 of which are missense mutation, 1 of which synonymous mutation, 1 nonsense mutation, 4 frameshift mutation, and 7 splicing site mutation. Among them, four mutations (p.T235K, c.1096-1G > A, p.A464A, and c.2660+1_2660+2insT) were novel mutations.
Conclusions We found the preliminary evidence that the high-frequency mutation D486N in the Chinese population affected the expression of total and membrane-bound NCC protein and influenced the membrane localization of NCC protein. The findings of this study provides experimental evidence for genetic counseling, diagnosis, and treatment of Gitelman syndrome.