留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
中国研究型医院学会罕见病分会, 中国罕见病联盟, 北京罕见病诊疗与保障学会, 青少年成人脊髓性肌萎缩症临床诊疗指南中国专家组. 青少年成人脊髓性肌萎缩症临床诊疗指南[J]. 罕见病研究, 2023, 2(2): 231-255. doi: 10.12376/j.issn.2097-0501.2023.02.010
引用本文: 中国研究型医院学会罕见病分会, 中国罕见病联盟, 北京罕见病诊疗与保障学会, 青少年成人脊髓性肌萎缩症临床诊疗指南中国专家组. 青少年成人脊髓性肌萎缩症临床诊疗指南[J]. 罕见病研究, 2023, 2(2): 231-255. doi: 10.12376/j.issn.2097-0501.2023.02.010
Rare Disease Society of Chinese Research Hospital Association, China Alliance for Rare Diseases, Beijing Society of Rare Disease Clinical Care and Accessibility, China Expert Group for Clinical Practice Guideline for Adolescent & Adult Patients with Spinal Muscular Atrophy. Clinical Practice Guideline for Adolescent & Adult Patients with Spinal Muscular Atrophy[J]. Journal of Rare Diseases, 2023, 2(2): 231-255. doi: 10.12376/j.issn.2097-0501.2023.02.010
Citation: Rare Disease Society of Chinese Research Hospital Association, China Alliance for Rare Diseases, Beijing Society of Rare Disease Clinical Care and Accessibility, China Expert Group for Clinical Practice Guideline for Adolescent & Adult Patients with Spinal Muscular Atrophy. Clinical Practice Guideline for Adolescent & Adult Patients with Spinal Muscular Atrophy[J]. Journal of Rare Diseases, 2023, 2(2): 231-255. doi: 10.12376/j.issn.2097-0501.2023.02.010

青少年成人脊髓性肌萎缩症临床诊疗指南

doi: 10.12376/j.issn.2097-0501.2023.02.010
基金项目: 

中央高水平医院临床科研业务费 2022-PUMCH-D-002

中国医学科学院罕见病研究中心支持项目 

通信作者:戴毅1,2,E-mail:pumchdy@pumch.cn
崔丽英1,2,E-mail:pumchcuily@sina.com
详细信息
  • 中图分类号: R746.4

Clinical Practice Guideline for Adolescent & Adult Patients with Spinal Muscular Atrophy

Funding: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-D-002

Supported by Center for Rare Diseases Research, Chinese Academy of Medical Sciences, Beijing, China 

Corresponding authors: DAI Yi1, 2, E-mail: pumchdy@pumch.cn
CUI Liying1, 2, E-mail: pumchcuily@sina.com
  • 摘要: 近年来,脊髓性肌萎缩症(SMA)在多学科综合管理、疾病修正治疗药物等方面取得长足进步,明显提升了患者生存期及生活质量。然而,对于年龄较大的青少年与成人患者尚缺乏系统性临床诊疗指南规范和指导临床工作。基于循证医学原则,来自全国多家SMA诊疗中心的多学科专家经过充分讨论,达成一致意见,为SMA临床规范化诊疗提供重要依据。

     

  • 图  1  操作前影像学检查

    A. 脊髓性肌萎缩症(SMA)患者脊柱3D-CT成像,红色箭头所指间隙可见棘突间隙及较宽大的椎板间隙,黄色箭头所指节段间隙棘突间隙因骨质融合已消失,相应椎板间隙狭窄;B. 1例SMA患者C1-C2椎间隙MRI T2加权像横断面成像,可见橘色虚线不规则圆形区域内的脊髓偏向椎管右侧;C. 1例SMA患者L2-L3椎板间隙旁矢状倾斜位纵轴扫查超声成像,蛛网膜下腔可见中高回声脊髓影像

    Figure  1.  Preparation of imaging studies before intrathecal injection

    图  2  超声引导下腰椎穿刺图像

    A.经腰椎椎板间隙纵轴失状倾斜位入路超声实时引导平面内穿刺给药技术探头位置及对应超声图像; B.经腰椎椎板间隙横轴位入路超声实时引导平面内穿刺给药技术超声探头位置及对应超声图像;黄色长方形色块代表探头位置,红色箭头代表进针方向,黄色带箭头虚线代表进针路径

    Figure  2.  Images of real-time ultrasound guiding lumbar puncture

    图  3  超声辅助/引导鞘内注射治疗临床决策流程

    Figure  3.  Clinical decision-making process of ultrasound assisted/guided intrathecal injection

    表  1  不同病情SMA患者运动功能评估建议

    Table  1.   Recommendations for motor function assessment of SMA patients with different functional status

    患者分型 日常活动 功能状态 生活质量
    不可独坐者 RULM
    CHOP-ATEND
    ROM
    SMAFRS SF-36
    可独坐(不可站立)者 RULM
    HFMSE
    MFM-32
    ROM
    SMAFRS SF-36
    可独坐(可辅助站立)者 RULM
    HFMSE
    MFM-32
    SMAFRS SF-36
    可行走者 HFMSE
    MFM-32
     
    SMAFRS
    TUGT
    6MWT
    SF-36
    RULM:修订的SMA上肢模块;CHOP-ATEND:费城儿童医院成人神经肌肉疾病测试;ROM:关节活动范围;SMAFRS:脊髓性肌萎缩症功能评估量表;SF-36:健康状况调查表;HFMSE:汉默史密斯功能运动量表扩展版;MFM-32:运动功能评估-32项;TUGT:“起立-行走”计时测试;6MWT:6分钟步行测试
    下载: 导出CSV

    表  2  应用无创正压通气治疗的时机

    Table  2.   Timing of the application of non-invasive positive pressure ventilation

    适用前提 具体治疗时机
    出现任一情况需要考虑开始夜间NIPPV治疗 白天高碳酸血症(PaCO2>45 mm Hg)
    睡眠呼吸障碍(包括出现睡眠低通气、OSA和CSA)
    矛盾呼吸
    端坐呼吸
    肺部反复感染并需要住院治疗(>3次/年)
    对已经应用夜间NIPPV治疗,出现此情况需要同时行白天NIPPV治疗 需要NIPPV的时间延长至清醒状态
    呼吸困难引起的吞咽异常,经NIPPV缓解
    呼吸困难严重,无法说整句话
    低通气症状,白天最低SpO2<95%或/和清醒时PaCO2>45 mm Hg
    NIPPV:无创正压通气治疗;PaCO2:动脉血二氧化碳分压;OSA:阻塞性睡眠呼吸暂停;CSA: 中枢性睡眠呼吸暂停;SpO2:血氧饱和度
    下载: 导出CSV
  • [1] Coratti G, Cutrona C, Pera MC, et al. Motor function in type 2 and 3 SMA patients treated with Nusinersen: a critical review and meta-analysis[J]. Orphanet J Rare Dis, 2021, 16(1): 430. doi: 10.1186/s13023-021-02065-z
    [2] Pane M, Palermo C, Messina S, et al. Nusinersen in type 1 SMA infants, children and young adults: preliminary results on motor function[J]. Neuromuscul Disord, 2018, 28(7): 582-585. doi: 10.1016/j.nmd.2018.05.010
    [3] Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care[J]. Neuromuscul Disord, 2018, 28(2): 103-115. doi: 10.1016/j.nmd.2017.11.005
    [4] Sansone VA, Walter VC, Attarian S, et al. Measuring outcomes in adults with spinal muscular atrophy- challenges and future directions- meeting report[J]. J Neuromuscul Dis, 2020, 7(4): 523-534. doi: 10.3233/JND-200534
    [5] Zizzi CE, Luebbe E, Mongiovi P, et al. The spinal muscular atrophy health index: a novel outcome for measuring how a patient feels and functions[J]. Muscle Nerve, 2021, 63(6): 837-844. doi: 10.1002/mus.27223
    [6] 陈迪, 邱卓英, 李沁燚, 等. 基于ICF的残疾和康复信息标准体系及其应用研究[C]. //第九届北京国际康复论坛文集, 2014: 1408-1418.
    [7] 邱卓英, 李沁燚, 陈迪, 等. ICF-CY理论架构、方法、分类体系及其应用[J]. 中国康复理论与实践, 2014, 20(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKLS201401001.htm
    [8] Main M, Kairon H, Mercuri E, et al. The Hammersmith functional motor scale for children with spinal muscular atrophy: a scale to test ability and monitor progress in children with limited ambulation[J]. Eur J Paediatr Neurol, 2003, 7(4): 155-159. doi: 10.1016/S1090-3798(03)00060-6
    [9] O'Hagen JM, Glanzman AM, McDermott MP, et al. An expanded version of the Hammersmith Functional Motor Scale for SMA Ⅱ and Ⅲ patients[J]. Neuromuscul Disord, 2007, 17(9-10): 693-697. doi: 10.1016/j.nmd.2007.05.009
    [10] Krosschell KJ, Scott CB, Maczulski JA, et al. Reliability of the Modified Hammersmith Functional Motor Scale in young children with spinal muscular atrophy[J]. Muscle Nerve, 2011, 44(2): 246-251. doi: 10.1002/mus.22040
    [11] Mazzone E, De Sanctis R, Fanelli L, et al. Hammersmith Functional Motor Scale and Motor Function Measure-20 in non ambulant SMA patients[J]. Neuromuscul Disord, 2014, 24(4): 347-352. doi: 10.1016/j.nmd.2014.01.003
    [12] Mazzone E, Bianco F, Martinelli D, et al. Assessing upper limb function in nonambulant SMA patients: development of a new module[J]. Neuromuscul Disord, 2011, 21(6): 406-412. doi: 10.1016/j.nmd.2011.02.014
    [13] Sivo S, Mazzone E, Antonaci L, et al. Upper limb module in non-ambulant patients with spinal mus- cular atrophy: 12 month changes[J]. Neuromuscul Disord, 2015, 25(3): 212-215. doi: 10.1016/j.nmd.2014.11.008
    [14] Montes J, Glanzman AM, Mazzone ES, et al. Spinal muscular atrophy functional composite score: a functional measure in spinal muscular atrophy[J]. Muscle Nerve, 2015, 52(6): 942-947. doi: 10.1002/mus.24670
    [15] Mazzone ES, Mayhew A, Montes J, et al. Revised upper limb module for spinal muscular atrophy: Development of a new module[J]. Muscle Nerve, 2017, 55(6): 869-874. doi: 10.1002/mus.25430
    [16] Kichula E, Duong T, Glanzman A, et al. Children's hospital of Philadelphia infant test of neuromuscular disorders (CHOP INTEND) feasibility for individuals with severe spinal muscular atrophy Ⅱ[EB/OL ]. (2018-04-26)[2022-12-01]. https://n.neurology.org/content/90/15_Supplement/S46.004.
    [17] Berard C, Payan C, Hodgkinson I, et al. A motor function measure for neuromuscular diseases. Construction and validation study[J]. Neuromuscul Disord, 2005, 15(7): 463-470. doi: 10.1016/j.nmd.2005.03.004
    [18] Vuillerot C, Payan P, Iwaz J, et al. Responsiveness of the motor function measure in patients with spinal muscular atrophy[J]. Arch Phys Med Rehabil, 2013, 94(8): 1555-1561. doi: 10.1016/j.apmr.2013.01.014
    [19] Mathias S, Nayak US, Isaacs B. Balance in elderly patients: the 'get-up and go' test[J]. Arch Phys Med Rehabil, 1986, 67(6): 387-389.
    [20] Podsiadlo D, Richardson S. The timed 'Up & Go': a test of basic functional mobility for frail elderly persons[J]. J Am Geriatr Soc, 1991, 39(2): 142-148. doi: 10.1111/j.1532-5415.1991.tb01616.x
    [21] Slayter J, Hodgkinson V, Lounsberry J, et al. A Canadian adult spinal muscular atrophy outcome measures toolkit: results of a national consensus using a modified delphi method[J]. J Neuromuscul Dis, 2021, 8(4): 579-588. doi: 10.3233/JND-200617
    [22] Dunaway S, Montes J, Garber CE, et al. Performance of the timed 'up & go' test in spinal muscular atrophy[J]. Muscle Nerve, 2014, 50(2): 273-277. doi: 10.1002/mus.24153
    [23] Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease[J]. Eur Respir J, 2014, 44(6): 1428-1446. doi: 10.1183/09031936.00150314
    [24] Solway S, Brooks D, Lacasse Y, et al. A qualitative systematic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain[J]. Chest, 2001, 119(1): 256-270. doi: 10.1378/chest.119.1.256
    [25] ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test[J]. Am J Respir Crit Care Med, 2002, 166(1): 111-117. doi: 10.1164/ajrccm.166.1.at1102
    [26] Singh SJ, Puhan MA, Andrianopoulos V, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease[J]. Eur Respir J, 2014, 44(6): 1447-1478. doi: 10.1183/09031936.00150414
    [27] Wang HY, Ju YH, Chen SM, et al. Joint range of motion limitations in children and young adults with spinal muscular atrophy[J]. Arch Phys Med Rehabil, 2004, 85(10): 1689-1693. doi: 10.1016/j.apmr.2004.01.043
    [28] Salazar R, Montes J, Young SD, et al. Quantitative evaluation of lower extremity joint contractures in spinal muscular atrophy: implications for motor function[J]. Pediatr Phys Ther, 2018, 30(3): 209-215. doi: 10.1097/PEP.0000000000000515
    [29] Fujak A, Kopschina C, Gras F, et al. Contractures of the upper extremities in spinal muscular atrophy type Ⅱ. Descriptive clinical study with retrospective data collection[J]. Ortop Traumatol Rehabil, 2010, 12(5): 410-419.
    [30] Elsheikh B, Prior T, Zhang XL, et al. An analysis of disease severity based on SMN2 copy number in adults with spinal muscular atrophy[J]. Muscle Nerve, 2009, 40(4): 652-656. doi: 10.1002/mus.21350
    [31] Elsheikh B, Severyn S, Zhao SZ, et al. Safety, toler-ability, and effect of nusinersen in non-ambulatory adults with spinal muscular atrophy[J]. Front Neurol, 2021, 12: 650532. doi: 10.3389/fneur.2021.650532
    [32] Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). Ⅰ. Conceptual framework and item selection[J]. Med Care, 1992, 30(6): 473-483. doi: 10.1097/00005650-199206000-00002
    [33] Kruitwagen-Van RET, Wadman RI, Visser-Meily JM, et al. Correlates of health related quality of life in adult patients with spinal muscular atrophy[J]. Muscle Nerve, 2016, 54(5): 850-855. doi: 10.1002/mus.25148
    [34] Mix L, Winter B, Wurster CD, et al. Quality of Life in SMA Patients Under Treatment With Nusinersen[J]. Front Neurol, 2021, 12: 626787. doi: 10.3389/fneur.2021.626787
    [35] Hodgkinson VL, Oskoui M, Lounsberry J, et al. A national spinal muscular atrophy registry for real-world evidence[J]. Can J Neurol Sci, 2020, 47(6): 810-815. doi: 10.1017/cjn.2020.111
    [36] McGraw S, Qian Y, Henne J, et al. A qualitative study of perceptions of meaningful change in spinal muscular atrophy[J]. BMC Neurol, 2017, 17(1): 68. doi: 10.1186/s12883-017-0853-y
    [37] 邱卓英. 《国际功能、残疾和健康分类》研究总论[J]. 中国康复理论与实践, 2003, 9(1): 2-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKLS200301002.htm
    [38] Fujak A, Kopschina C, Forst R, et al. Use of orthoses and orthopaedic technical devices in proximal spinal muscular atrophy. Results of survey in 194 SMA patients[J]. Disabil Rehabil Assist Technol, 2011, 6(4): 305-311. doi: 10.3109/17483107.2010.525292
    [39] Lewelt A, Krosschell KJ, Stoddard GJ, et al. Resistance strength training exercise in children with spinal muscular atrophy[J]. Muscle Nerve, 2015, 52(4): 559-567. doi: 10.1002/mus.24568
    [40] Wadman RI, Wijngaarde CA, Stam M, et al. Muscle strength and motor function throughout life in a cross-sectional cohort of 180 patients with spinal muscular atrophy types 1c-4[J]. Eur J Neurol, 2018, 25(3): 512-518. doi: 10.1111/ene.13534
    [41] Montes J, Garber CE, Kramer SS, et al. Single-blind, randomized, controlled clinical trial of exercise in ambulatory spinal muscular atrophy: why are the results negative?[J]. J Neuromuscul Dis, 2015, 2(4): 463-470. doi: 10.3233/JND-150101
    [42] Sansone VA, Racca F, Ottonello G, et al. 1st Italian SMA Family Association Consensus Meeting: Management and recommendations for respiratory involvement in spinal muscular atrophy (SMA) types Ⅰ-Ⅲ, Rome, Italy, 30-31 January 2015[J]. Neuromuscul Disord, 2015, 25(12): 979-989. doi: 10.1016/j.nmd.2015.09.009
    [43] 中国医师协会儿科医师分会, 中国医师协会儿科医师分会儿童呼吸学组. 脊髓性肌萎缩症呼吸管理专家共识(2022版)[J]. 中华实用儿科临床杂志, 2022, 37(6): 401-411.
    [44] 北京医学会罕见病分会, 北京医学会医学遗传学分会, 北京医学会神经病学分会神经肌肉病学组, 等. 脊髓性肌萎缩症多学科管理专家共识[J]. 中华医学杂志, 2019, 99(19): 1460-1467. doi: 10.3760/cma.j.issn.0376-2491.2019.19.006
    [45] Trucco F, Ridout D, Scoto M, et al. Respiratory trajectories in type 2 and 3 spinal muscular atrophy in the iSMAC cohort study[J]. Neurology, 2021, 96(4): e587-e599. doi: 10.1212/WNL.0000000000011051
    [46] Wijngaarde CA, Veldhoen ES, van Eijk RPA, et al. Natural history of lung function in spinal muscular atrophy[J]. Orphanet J Rare Dis, 2020, 15(1): 88. doi: 10.1186/s13023-020-01367-y
    [47] Veldhoen ES, Wijngaarde CA, Hulzebos EHJ, et al. Natural history of respiratory muscle strength in spinal muscular atrophy: a prospective national cohort study[J]. Orphanet J Rare Dis, 2022, 17(1): 70. doi: 10.1186/s13023-022-02227-7
    [48] Chacko A, Sly PD, Gauld L. Polysomnography findings in pediatric spinal muscular atrophy types 1-3[J]. Sleep Med, 2020, 68: 124-130. doi: 10.1016/j.sleep.2019.12.004
    [49] Hull J, Aniapravan R, Chan E, et al. British Thoracic Society guideline for respiratory management of children with neuromuscular weakness[J]. Thorax, 2012, 67 Suppl 1: i1-40. doi: 10.1136/thoraxjnl-2012-201964
    [50] Bersanini C, Khirani S, Ramirez A, et al. Nocturnal hypoxaemia and hypercapnia in children with neuromuscular disorders[J]. Eur Respir J, 2012, 39(5): 1206-1212. doi: 10.1183/09031936.00087511
    [51] Aboussouan LS. Sleep-disordered breathing in neuromuscular disease[J]. Am J Respir Crit Care Med, 2015, 191(9): 979-989. doi: 10.1164/rccm.201412-2224CI
    [52] Berry RB, Chediak A, Brown LK, et al. Best clinical practices for the sleep center adjustment of noninvasive positive pressure ventilation (NPPV) in stable chronic alveolar hypoventilation syndromes[J]. J Clin Sleep Med, 2010, 6(5): 491-509. doi: 10.5664/jcsm.27941
    [53] Hermann W, Langner S, Freigang M, et al. Affection of respiratory muscles in ALS and SMA[J]. J Clin Med, 2022, 11(5): 1163. doi: 10.3390/jcm11051163
    [54] Spiesshoefer J, Herkenrath S, Henke C, et al. Evaluation of respiratory muscle strength and diaphragm ultrasound: normative values, theoretical considerations, and practical recommendations[J]. Respiration, 2020, 99(5): 369-381. doi: 10.1159/000506016
    [55] Benditt JO. Respiratory care of patients with neuromuscular disease[J]. Respir Care, 2019, 64(6): 679-688. doi: 10.4187/respcare.06827
    [56] Wolfe LF, Benditt JO, Aboussouan L, et al. Optimal NIV medicare access promotion: patients with thoracic restrictive disorders: a technical expert panel report from the american college of chest physicians, the american association for respiratory care, the american academy of sleep medicine, and the american thoracic society[J]. Chest, 2021, 160(5): e399-e408. doi: 10.1016/j.chest.2021.05.075
    [57] Ward S, Chatwin M, Heather S, et al. Randomised controlled trial of non-invasive ventilation (NIV) for nocturnal hypoventilation in neuromuscular and chest wall disease patients with daytime normocapnia[J]. Thorax, 2005, 60(12): 1019-1024. doi: 10.1136/thx.2004.037424
    [58] Chacko A, Sly PD, Ware RS, et al. Effect of nusinersen on respiratory function in paediatric spinal muscular atrophy types 1-3[J]. Thorax, 2022, 77(1): 40-46. doi: 10.1136/thoraxjnl-2020-216564
    [59] Walter MC, Wenninger S, Thiele S, et al. Safety and treatment effects of nusinersen in longstanding adult 5q-SMA type 3- a prospective observational study[J]. J Neuromuscul Dis, 2019, 6(4): 453-465. doi: 10.3233/JND-190416
    [60] Mercuri E, Deconinck N, Mazzone ES, et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial[J]. Lancet Neurol, 2022, 21(1): 42-52. doi: 10.1016/S1474-4422(21)00367-7
    [61] Wurster CD, Winter B, Wollinsky K, et al. Intrathecal administration of nusinersen in adolescent and adult SMA type 2 and 3 patients[J]. J Neurol, 2019, 266(1): 183-194. doi: 10.1007/s00415-018-9124-0
    [62] Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study[J]. Lancet, 2012, 380(9840): 499-505. doi: 10.1016/S0140-6736(12)60815-0
    [63] Zhang J, Cui XL, Chen S, et al. Ultrasound-guided nusinersen administration for spinal muscular atrophy patients with severe scoliosis: an observational study[J]. Orphanet J Rare Dis, 2021, 16(1): 274. doi: 10.1186/s13023-021-01903-4
    [64] Perlas A, Chaparro LE, Chin KJ. Lumbar neuraxial ultrasound for spinal and epidural anesthesia: a systematic review and meta-analysis[J]. Reg Anesth Pain Med, 2016, 41(2): 251-260. doi: 10.1097/AAP.0000000000000184
    [65] Soh E, Karmakar MK. Assessment of the spine with CT and MRI prior to interspinous/interlaminar spinal procedures: a pictorial review[J]. Br J Radiol, 2013, 86(1026): 20130066. doi: 10.1259/bjr.20130066
    [66] Chu WC, Rasalkar DD, Cheng JC. Asynchronous neuro-osseous growth in adolescent idiopathic scoliosis—MRI-based research[J]. Pediatr Radiol, 2011, 41: 1100-1111. doi: 10.1007/s00247-010-1778-4
    [67] Furness G, Reilly MP, Kuchi S. An evaluation of ultrasound imaging for identification of lumbar intervertebral level[J]. Anaesthesia, 2002, 57(3): 277-280. doi: 10.1046/j.1365-2044.2002.2403_4.x
    [68] Gottlieb M, Holladay D, Peksa GD. Ultrasound-assisted lumbar punctures: a systematic review and meta-analysis[J]. Acad Emerg Med, 2019, 26(1): 85-96.
    [69] Karmakar MK, Li X, Ho AMH, et al. Real-time ultrasound-guided paramedian epidural access: evaluation of a novel in-plane technique[J]. Br J Anaesth, 2009, 102(6): 845-854. doi: 10.1093/bja/aep079
    [70] Liu Y, Qian W, Ke XJ, et al. Real-time ultrasound-guided spinal anesthesia using a new paramedian transverse approach[J]. Curr Med Sci, 2018, 38(5): 910-913. doi: 10.1007/s11596-018-1961-7
    [71] Daniels SP, Schweitzer AD, Baidya R, et al. The lateral C1-C2 puncture: indications, technique, and potential complications[J]. AJR Am J Roentgenol, 2019, 212(2): 431-442. doi: 10.2214/AJR.18.19584
    [72] Ulbrich EJ, Schraner C, Boesch C, et al. Normative MR cervical spinal canal dimensions[J]. Radiology, 2014, 271(1): 172-182. doi: 10.1148/radiol.13120370
    [73] Li Y, Carandang RA, Ade S, et al. Ultrasound-guided lumbar puncture improves success rate and efficiency in overweight patients[J]. Neurol Clin Pract, 2020, 10(4): 307-313. doi: 10.1212/CPJ.0000000000000725
    [74] Coley DB, Shiels EW, Hogan JM. Diagnostic and interventional ultrasonography in neonatal and infant lumbar puncture[J]. Pediatr Radiol, 2001, 31(6): 399-402. doi: 10.1007/s002470100453
    [75] Bogduk N. Clinical Anatomy of Lumbar Spine. 3rd ed[M]. Churchill Livingstone, New York, 1987: 63-163.
    [76] Muthusami P, Robinson AJ, Shroff MM. Ultrasound guidance for difficult lumbar puncture in children: pearls and pitfalls[J]. Pediatr Radiol, 2017, 47(7): 822-830. doi: 10.1007/s00247-017-3794-0
    [77] Boon JM, Abrahams PH, Meiring JH, et al. Lumbar puncture: anatomical review of a clinical skill[J]. Clin Anat, 2004, 17(7): 544-553. doi: 10.1002/ca.10250
    [78] 黄庆, 郑碧琼, 林兰英. 鞘内注射诺西那生钠治疗Ⅰ型脊髓性肌萎缩症患儿的麻醉管理[J]. 福建医科大学学报, 2020, 54(5): 322-326. doi: 10.3969/j.issn.1672-4194.2020.05.009
    [79] Butson B, Kwa P. Lumbar puncture[J]. Emerg Med Australas, 2014, 26(5): 500-501. doi: 10.1111/1742-6723.12290
    [80] Turnbull DK, Shepherd DB. Post-dural puncture headache: pathogenesis, prevention and treatment[J]. Br J Anaesth, 2003, 91(5): 718-729. doi: 10.1093/bja/aeg231
    [81] 马虹, 王国林, 王俊科, 等. 椎管内阻滞并发症防治专家共识(2017)[EB/OL]. (2017-12-14)[2022-12-01]. http://csahq.cma.org.cn/guide/detail_391.html.
    [82] Dodd KC, Emsley HCA, Desborough MJR, et al. Periprocedural antithrombotic management for lumbar puncture: Association of British Neurologists clinical guideline[J]. Pract Neurol, 2018, 18(6): 436-446. doi: 10.1136/practneurol-2017-001820
    [83] 沈建雄. 综合征性脊柱侧凸的诊治[J]. 中华骨与关节外科杂志, 2021, 14(5): 333-336. doi: 10.3969/j.issn.2095-9958.2021.05.04
    [84] Rodillo E, Marini ML, Heckmatt JZ, et al. Scoliosis in spinal muscular atrophy: review of 63 cases[J]. J Child Neurol, 1989, 4(2): 118-123. doi: 10.1177/088307388900400208
    [85] Garg S. Management of scoliosis in patients with Duchenne muscular dystrophy and spinal muscular atrophy: a literature review[J]. J Pediatr Rehabil Med, 2016, 9(1): 23-29. doi: 10.3233/PRM-160358
    [86] Boulay C, Peltier E, Jouve JL, et al. Functional and surgical treatments in patients with spinal muscular atrophy (SMA)[J]. Arch Pediatr, 2020, 27(7S): 7S35-7S39.
    [87] Wang Z, Feng E, Jiao Y, et al. Surgical treatment of spinal deformities in spinal muscular atrophy: a single-center experience from China[J]. Eur Spine J, 2022, 31(11): 3089-3097. doi: 10.1007/s00586-022-07347-z
    [88] Islander G. Anesthesia and spinal muscle atrophy[J]. Paediatr Anaesth, 2013, 23(9): 804-816. doi: 10.1111/pan.12159
    [89] Förster JG, Schlenzka D, Österman H, et al. Anaesthetic considerations in posterior instrumentation of scoliosis due to spinal muscular atrophy: Case series of 56 operated patients[J]. Acta Anaesthesiol Scand, 2022, 66(3): 345-353. doi: 10.1111/aas.14011
    [90] Wijngaarde CA, Brink RC, de Kort FAS, et al. Natural course of scoliosis and lifetime risk of scoliosis surgery in spinal muscular atrophy[J]. Neurology, 2019, 93(2): e149-e158. doi: 10.1212/WNL.0000000000007742
    [91] Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care[J]. Neuromuscul Disord, 2018, 28(2): 103-115. doi: 10.1016/j.nmd.2017.11.005
    [92] Güldner A, Kiss T, Neto AA, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers[J]. Anesthesiology, 2015, 123(3): 692-713. doi: 10.1097/ALN.0000000000000754
    [93] Naylor AJ, Sessler DI, Maheshwari K, et al. Arterial catheters for early detection and treatment of hypotension during major noncardiac surgery: a randomized trial[J]. Anesth Analg, 2020, 131(5): 1540-1550. doi: 10.1213/ANE.0000000000004370
    [94] Teboul JL, Monnet X, Chemla D, et al. Arterial pulse pressure variation with mechanical ventilation[J]. Am J Respir Crit Care Med, 2019, 199(1): 22-31. doi: 10.1164/rccm.201801-0088CI
    [95] Okamura M, Saito W, Miyagi M, et al. Incidence of unintentional intraoperative hypothermia in pediatric scoliosis surgery and associated preoperative risk factors[J]. Spine Surg Relat Res, 2020, 5(3): 154-159.
    [96] Ohrt-Nissen S, Bukhari N, Dragsted C, et al. Blood transfusion in the surgical treatment of adolescent idiopathic scoliosis-a single-center experience of patient blood management in 210 cases[J]. Transfusion, 2017, 57(7): 1808-1817. doi: 10.1111/trf.14137
    [97] Sui WY, Ye F, Yang JL. Efficacy of tranexamic acid in reducing allogeneic blood products in adolescent idiopathic scoliosis surgery[J]. BMC Musculoskelet Disord, 2016, 17: 187. doi: 10.1186/s12891-016-1006-y
    [98] Lee CS, Merchant S, Chidambaran V. Postoperative pain management in pediatric spinal fusion surgery for idiopathic scoliosis[J]. Paediatr Drugs, 2020, 22(6): 575-601. doi: 10.1007/s40272-020-00423-1
    [99] Shah SA, Guidry R, Kumar A, et al. Current trends in pediatric spine deformity surgery: multimodal pain management and rapid recovery[J]. Global Spine J, 2020, 10(3): 346-352. doi: 10.1177/2192568219858308
    [100] Jitpakdee T, Mandee S. Strategies for preventing side effects of systemic opioid in postoperative pediatric patients[J]. Paediatr Anaesth, 2014, 24(6): 561-568. doi: 10.1111/pan.12420
    [101] Sheffer BW, Kelly DM, Rhodes LN, et al. Perioperative pain management in pediatric spine surgery[J]. Orthop Clin North Am, 2017, 48(4): 481-486. doi: 10.1016/j.ocl.2017.06.004
    [102] Phillips DP, Roye DP, Farcy JP, et al. Surgical treat-ment of scoliosis in a spinal muscular atrophy population[J]. Spine (Phila Pa 1976), 1990, 15(9): 942-945. doi: 10.1097/00007632-199009000-00019
    [103] Fauroux B, Griffon L, Amaddeo A, et al. Respiratory management of children with spinal muscular atrophy (SMA)[J]. Arch Pediatr, 2020, 27(7S): 7S29-7S34.
    [104] Fujak A, Raab W, Schuh A, et al. Natural course of scoliosis in proximal spinal muscular atrophy type Ⅱ and Ⅲa: descriptive clinical study with retrospective data collection of 126 patients[J]. BMC Musculoskelet Disord, 2013, 14: 283. doi: 10.1186/1471-2474-14-283
    [105] Fujak A, Kopschina C, Forst R, et al. Use of orthoses and orthopaedic technical devices in proximal spinal muscular atrophy. Results of survey in 194 SMA patients[J]. Disabil Rehabil Assist Technol, 2011, 6(4): 305-311. doi: 10.3109/17483107.2010.525292
    [106] Mesfin A, Sponseller PD, Leet AI. Spinal muscular atrophy: manifestations and management[J]. J Am Acad Orthop Surg, 2012, 20(6): 393-401. doi: 10.5435/JAAOS-20-06-393
    [107] Wijngaarde CA, Brink RC, de Kort FAS, et al. Natural course of scoliosis and lifetime risk of scoliosis surgery in spinal muscular atrophy[J]. Neurology, 2019, 93(2): e149-e158. doi: 10.1212/WNL.0000000000007742
    [108] Khatri IA, Chaudhry US, Seikaly MG, et al. Low bone mineral density in spinal muscular atrophy[J]. J Clin Neuromuscul Dis, 2017, 10(1): 11-17.
    [109] Wasserman HM, Hornung LN, Stenger PJ, et al. Low bone mineral density and fractures are highly prevalent in pediatric patients with spinal muscular atrophy regardless of disease severity[J]. Neuromuscul Disord, 2017, 27(4): 331-337. doi: 10.1016/j.nmd.2017.01.019
    [110] Nasomyont N, Hornung LN, Wasserman H. Intravenous bisphosphonate therapy in children with spinal muscular atrophy[J]. Osteoporos Int, 2020, 31(5): 995-1000. doi: 10.1007/s00198-019-05227-9
    [111] McElroy MJ, Shaner AC, Crawford TO, et al. Growing rods for scoliosis in spinal muscular atrophy: structural effects, complications, and hospital stays[J]. Spine (Phila Pa 1976), 2011, 36(16): 1305-1311. doi: 10.1097/BRS.0b013e3182194937
    [112] Chandran S, McCarthy J, Noonan K, et al. Early treatment of scoliosis with growing rods in children with severe spinal muscular atrophy: a preliminary report[J]. J Pediatr Orthop, 2011, 31(4): 450-454. doi: 10.1097/BPO.0b013e31821722b1
    [113] Swarup I, MacAlpine EM, Mayer OH, et al. Impact of growth friendly interventions on spine and pulmonary outcomes of patients with spinal muscular atrophy[J]. Eur Spine J, 2021, 30(3): 768-774. doi: 10.1007/s00586-020-06564-8
    [114] Lorenz HM, Badwan B, Hecker MM, et al. Magnetically controlled devices parallel to the spine in children with spinal muscular atrophy[J]. JB JS Open Access, 2017, 2(4): e0036. doi: 10.2106/JBJS.OA.17.00036
    [115] Sporer SM, Smith BG. Hip dislocation in patients with spinal muscular atrophy[J]. J Pediatr Orthop, 2003, 23(1): 10-14.
    [116] Zenios M, Sampath J, Cole C, et al. Operative treatment for hip subluxation in spinal muscular atrophy[J]. J Bone Joint Surg Br, 2005, 87(11): 1541-1544.
    [117] Xu AL, Crawford TO, Sponseller PD. Hip pain in patients with spinal muscular atrophy: prevalence, intensity, interference, and factors associated with moderate to severe pain[J]. J Pediatr Orthop, 2022, 42(5): 273-279. doi: 10.1097/BPO.0000000000002091
    [118] Thompson CE, Larsen LJ. Recurrent hip dislocation in intermediate spinal atrophy[J]. J Pediatr Orthop, 1990, 10(5): 638-641. doi: 10.1097/01241398-199009000-00013
    [119] Fujak A, Kopschina C, Gras F, et al. Contractures of the lower extremities in spinal muscular atrophy type Ⅱ. Descriptive clinical study with retrospective data collection[J]. Ortop Traumatol Rehabil, 2011, 13(1): 27-36. doi: 10.5604/15093492.933792
    [120] Hanna RB, Nahm N, Bent MA, et al. Hip pain in nonambulatory children with type-Ⅰ or Ⅱ spinal muscular atrophy[J]. JB JS Open Access, 2022, 7(3): e22.00011.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  22
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 录用日期:  2023-03-24

目录

    /

    返回文章
    返回