留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

法布雷病心脏受累——强化认识,早诊早治

李卓津 金玮

李卓津, 金玮. 法布雷病心脏受累——强化认识,早诊早治[J]. 罕见病研究, 2023, 2(1): 121-127. doi: 10.12376/j.issn.2097-0501.2023.01.017
引用本文: 李卓津, 金玮. 法布雷病心脏受累——强化认识,早诊早治[J]. 罕见病研究, 2023, 2(1): 121-127. doi: 10.12376/j.issn.2097-0501.2023.01.017
LI Zhuojin, JIN Wei. Fabry Disease Cardiac Involvement: Strengthen the Understanding of Early Diagnosis and Treatment[J]. Journal of Rare Diseases, 2023, 2(1): 121-127. doi: 10.12376/j.issn.2097-0501.2023.01.017
Citation: LI Zhuojin, JIN Wei. Fabry Disease Cardiac Involvement: Strengthen the Understanding of Early Diagnosis and Treatment[J]. Journal of Rare Diseases, 2023, 2(1): 121-127. doi: 10.12376/j.issn.2097-0501.2023.01.017

法布雷病心脏受累——强化认识,早诊早治

doi: 10.12376/j.issn.2097-0501.2023.01.017
基金项目: 

国家自然科学基金项目 81970337

国家自然科学基金项目 82270404

上海市学术/技术带头人计划项目 21XD1402100

详细信息
    通信作者:

    金玮,E-mail:jinwei@shsmu.edu.cn

  • 中图分类号: R54

Fabry Disease Cardiac Involvement: Strengthen the Understanding of Early Diagnosis and Treatment

Funding: 

National Natural Science Foundation of China 81970337

National Natural Science Foundation of China 82270404

Program of Shanghai Academic/Technology Research Leader 21XD1402100

More Information
  • 摘要: 法布雷病是一种由GLA基因突变导致的X染色体连锁遗传溶酶体贮积症,该基因编码的α半乳糖苷酶A活性受损,造成其代谢底物三己糖酰基鞘脂醇(GL-3)在心脏、肾脏等多脏器贮积。法布雷病心脏受累在临床上主要表现为左心室肥厚(LVH)、心肌纤维化、心力衰竭和心律失常等,是降低患者生活质量、造成患者死亡的首要原因。近年来,酶活性检测和基因检测技术的普及使法布雷病确诊不再困难,心电图、心脏超声、心脏磁共振(CMR)等多种影像手段为临床识别法布雷病心脏受累者提供了重要价值。酶替代疗法(ERT)的应用显著延缓了患者的疾病进程,口服药物分子伴侣治疗、底物减少治疗等亦拓宽了法布雷病特异性治疗的前景。因此,早发现、早诊断、早治疗成为法布雷病心脏受累诊疗的重点和难点。本文将对法布雷病心脏受累的概况、病理生理机制、诊断与分期、治疗进行综述。

     

  • 图  1  法布雷病心脏受累的诊断流程

    LVH:左心室肥厚;HFpEF:射血分数保留的心力衰竭;α-Gal A: α半乳糖苷酶A; lyso-GL-3:脱乙酰基三己糖酰基鞘脂醇;CMR:心脏磁共振;LGE:钆延迟增强

    Figure  1.  The diagnostic procedure for cardiac involvement in Fabry disease

  • [1] 中国法布雷病专家协作组. 中国法布雷病诊疗专家共识(2021年版)[J]. 中华内科杂志, 2021, 60(4): 321-330. doi: 10.3760/cma.j.cn112138-20201218-01028
    [2] Nowicki M, Bazan-Socha S, Bła żejewska-Hyzorek B, et al. Enzyme replacement therapy in Fabry disease in Poland: a position statement[J]. Pol Arch Intern Med, 2020, 130(1): 91-97.
    [3] Echevarria L, Benistan K, Toussaint A, et al. X-chromosome inactivation in female patients with Fabry disease[J]. Clin Genet, 2016, 89(1): 44-54. doi: 10.1111/cge.12613
    [4] Meikle PJ, Hopwood JJ, Clague AE, et al. Prevalence of lysosomal storage disorders[J]. JAMA, 1999, 281(3): 249-254. doi: 10.1001/jama.281.3.249
    [5] Spada M, Pagliardini S, Yasuda M, et al. High incidence of later-onset Fabry disease revealed by newborn screening[J]. Am J Hum Genet, 2006, 79(1): 31-40. doi: 10.1086/504601
    [6] Hwu WL, Chien YH, Lee NC, et al. Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c. 936+919G > A (IVS4+919G > A)[J]. Hum Mutat, 2009, 30(10): 1397-1405. doi: 10.1002/humu.21074
    [7] Sawada T, Kido J, Yoshida S, et al. Newborn screening for Fabry disease in the western region of Japan[J]. Mol Genet Metab Rep, 2020, 22: 100562. doi: 10.1016/j.ymgmr.2019.100562
    [8] Pieroni M, Moon JC, Arbustini E, et al. Cardiac involvement in Fabry disease: JACC review topic of the week[J]. J Am Coll Cardiol, 2021, 77(7): 922-936. doi: 10.1016/j.jacc.2020.12.024
    [9] Ortiz A, Germain DP, Desnick RJ, et al. Fabry disease revisited: management and treatment recommendations for adult patients[J]. Mol Genet Metab, 2018, 123(4): 416-427. doi: 10.1016/j.ymgme.2018.02.014
    [10] Linhart A, Elliott PM. The heart in Anderson-Fabry disease and other lysosomal storage disorders[J]. Heart, 2007, 93(4): 528-535. doi: 10.1136/hrt.2005.063818
    [11] Mehta A, Clarke JT, Giugliani R, et al. Natural course of Fabry disease: changing pattern of causes of death in FOS-Fabry Outcome Survey[J]. J Med Genet, 2009, 46(8): 548-552. doi: 10.1136/jmg.2008.065904
    [12] Kampmann C, Linhart A, Baehner F, et al. Onset and progression of the Anderson-Fabry disease related cardiomyopathy[J]. Int J Cardiol, 2008, 130(3): 367-373. doi: 10.1016/j.ijcard.2008.03.007
    [13] Lidove O, Barbey F, Niu DM, et al. Fabry in the older patient: clinical consequences and possibilities for treatment[J]. Mol Genet Metab, 2016, 118(4): 319-325. doi: 10.1016/j.ymgme.2016.05.009
    [14] Waldek S, Patel MR, Banikazemi M, et al. Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry[J]. Genet Med, 2009, 11(11): 790-796. doi: 10.1097/GIM.0b013e3181bb05bb
    [15] Baig S, Edward NC, Kotecha D, et al. Ventricular arrhythmia and sudden cardiac death in Fabry disease: a systematic review of risk factors in clinical practice[J]. Europace, 2018, 20(FI2): f153-f161. doi: 10.1093/europace/eux261
    [16] Germain DP, Brand E, Burlina A, et al. Phenotypic characteristics of the p. Asn215Ser (p. N215S) GLA mutation in male and female patients with Fabry disease: a multicenter Fabry Registry study[J]. Mol Genet Genomic Med, 2018, 6(4): 492-503. doi: 10.1002/mgg3.389
    [17] Hsu TR, Hung SC, Chang FP, et al. Later onset Fabry disease, cardiac damage progress in silence: experience with a highly prevalent mutation[J]. J Am Coll Cardiol, 2016, 68(23): 2554-2563. doi: 10.1016/j.jacc.2016.09.943
    [18] Doheny D, Srinivasan R, Pagant S, et al. Fabry disease: prevalence of affected males and heterozygotes with pathogenic GLA mutations identified by screening renal, cardiac and stroke clinics, 1995-2017[J]. J Med Genet, 2018, 55(4): 261-268. doi: 10.1136/jmedgenet-2017-105080
    [19] Nair V, Belanger EC, Veinot JP. Lysosomal storage disorders affecting the heart: a review[J]. Cardiovasc Pathol, 2019, 39: 12-24. doi: 10.1016/j.carpath.2018.11.002
    [20] Ivanova M. Altered sphingolipids metabolism damaged mitochondrial functions: lessons learned from gaucher and Fabry diseases[J]. J Clin Med, 2020, 9(4): 1116. doi: 10.3390/jcm9041116
    [21] Chimenti C, Hamdani N, Boontje NM, et al. Myofilament degradation and dysfunction of human cardiomyocytes in Fabry disease[J]. Am J Pathol, 2008, 172(6): 1482-1490. doi: 10.2353/ajpath.2008.070576
    [22] Birket MJ, Raibaud S, Lettieri M, et al. A human stem cell model of Fabry disease implicates LIMP-2 accumulation in cardiomyocyte pathology[J]. Stem Cell Reports, 2019, 13(2): 380-393. doi: 10.1016/j.stemcr.2019.07.004
    [23] Rozenfeld P, Feriozzi S. Contribution of inflammatory pathways to Fabry disease pathogenesis[J]. Mol Genet Metab, 2017, 122(3): 19-27. doi: 10.1016/j.ymgme.2017.09.004
    [24] Frustaci A, Verardo R, Grande C, et al. Immune-mediated myocarditis in Fabry disease cardiomyopathy[J]. J Am Heart Assoc, 2018, 7(17): e009052. doi: 10.1161/JAHA.118.009052
    [25] Linhart A, Germain DP, Olivotto I, et al. An expert consensus document on the management of cardiovascular manifestations of Fabry disease[J]. Eur J Heart Fail, 2020, 22(7): 1076-1096. doi: 10.1002/ejhf.1960
    [26] Smid BE, van der Tol L, Cecchi F, et al. Uncertain diagnosis of Fabry disease: consensus recommendation on diagnosis in adults with left ventricular hypertrophy and genetic variants of unknown significance[J]. Int J Cardiol, 2014, 177(2): 400-408. doi: 10.1016/j.ijcard.2014.09.001
    [27] Hagège A, Réant P, Habib G, et al. Fabry disease in cardiology practice: literature review and expert point of view[J]. Arch Cardiovasc Dis, 2019, 112(4): 278-287. doi: 10.1016/j.acvd.2019.01.002
    [28] Namdar M, Steffel J, Vidovic M, et al. Electrocardio-graphic changes in early recognition of Fabry disease[J]. Heart, 2011, 97(6): 485-490. doi: 10.1136/hrt.2010.211789
    [29] O'Mahony C, Coats C, Cardona M, et al. Incidence and predictors of anti-bradycardia pacing in patients with Anderson-Fabry disease[J]. Europace, 2011, 13(12): 1781-1788. doi: 10.1093/europace/eur267
    [30] Sené T, Lidove O, Sebbah J, et al. Cardiac device implantation in Fabry disease: a retrospective monocentric study[J]. Medicine(Baltimore), 2016, 95(40): e4996.
    [31] Cianciulli TF, Saccheri MC, Fernández SP, et al. Apical left ventricular hypertrophy and mid-ventricular obstruction in Fabry disease[J]. Echocardiography, 2015, 32(5): 860-863. doi: 10.1111/echo.12900
    [32] Graziani F, Laurito M, Pieroni M, et al. Right ventricular hypertrophy, systolic function, and disease severity in anderson-Fabry disease: an echocardiographic study[J]. J Am Soc Echocardiogr, 2017, 30(3): 282-291. doi: 10.1016/j.echo.2016.11.014
    [33] Niemann M, Breunig F, Beer M, et al. The right ventricle in Fabry disease: natural history and impact of enzyme replacement therapy[J]. Heart, 2010, 96(23): 1915-1919. doi: 10.1136/hrt.2010.204586
    [34] Niemann M, Liu D, Hu K, et al. Prominent papillary muscles in Fabry disease: a diagnostic marker?[J]. Ultrasound Med Biol, 2011, 37(1): 37-43. doi: 10.1016/j.ultrasmedbio.2010.10.017
    [35] Mundigler G, Gaggl M, Heinze G, et al. The endocardial binary appearance ('binary sign')is an unreliable marker for echocardiographic detection of Fabry disease in patients with left ventricular hypertrophy[J]. Eur J Echocardiogr, 2011, 12(10): 744-749. doi: 10.1093/ejechocard/jer112
    [36] Toro R, Perez-Isla L, Doxastaquis G, et al. Clinical usefulness of tissue Doppler imaging in predicting preclinical Fabry cardiomyopathy[J]. Int J Cardiol, 2009, 132(1): 38-44. doi: 10.1016/j.ijcard.2008.04.075
    [37] Krämer J, Niemann M, Liu D, et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease[J]. Eur Heart J, 2013, 34(21): 1587-1596. doi: 10.1093/eurheartj/eht098
    [38] Labombarda F, Saloux E, Milesi G, et al. Loss of base-to-apex circumferential strain gradient: a specific pattern of Fabry cardiomyopathy?[J]. Echocardiography, 2017, 34(4): 504-510. doi: 10.1111/echo.13496
    [39] Weidemann F, Beer M, Kralewski M, et al. Early detection of organ involvement in Fabry disease by biomarker assessment in conjunction with LGE cardiac MRI: results from the SOPHIA study[J]. Mol Genet Metab, 2019, 126(2): 169-182. doi: 10.1016/j.ymgme.2018.11.005
    [40] Krämer J, Niemann M, Störk S, et al. Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease[J]. Am J Cardiol, 2014, 114(6): 895-900. doi: 10.1016/j.amjcard.2014.06.019
    [41] Pica S, Sado DM, Maestrini V, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2014, 16(1): 99. doi: 10.1186/s12968-014-0099-4
    [42] Nordin S, Kozor R, Baig S, et al. Cardiac phenotype of prehypertrophic Fabry disease[J]. Circ Cardiovasc Imaging, 2018, 11(6): e007168. doi: 10.1161/CIRCIMAGING.117.007168
    [43] Nordin S, Kozor R, Vijapurapu R, et al. Myocardial storage, inflammation, and cardiac phenotype in Fabry disease after one year of enzyme replacement therapy[J]. Circ Cardiovasc Imaging, 2019, 12(12): e009430. doi: 10.1161/CIRCIMAGING.119.009430
    [44] Nordin S, Kozor R, Bulluck H, et al. Cardiac Fabry disease with late gadolinium enhancement is a chronic inflammatory cardiomyopathy[J]. J Am Coll Cardiol, 2016, 68(15): 1707-1708. doi: 10.1016/j.jacc.2016.07.741
    [45] Nordin S, Kozor R, Medina-Menacho K, et al. Proposed stages of myocardial phenotype development in Fabry disease[J]. JACC Cardiovasc Imaging, 2019, 12(8 Pt 2): 1673-1683.
    [46] Tomberli B, Cecchi F, Sciagrà R, et al. Coronary microvascular dysfunction is an early feature of cardiac involvement in patients with Anderson-Fabry disease[J]. Eur J Heart Fail, 2013, 15(12): 1363-1373. doi: 10.1093/eurjhf/hft104
    [47] Nappi C, Altiero M, Imbriaco M, et al. First experience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson-Fabry disease[J]. Eur J Nucl Med Mol Imaging, 2015, 42(7): 1025-1031. doi: 10.1007/s00259-015-3036-3
    [48] Imbriaco M, Pellegrino T, Piscopo V, et al. Cardiac sympathetic neuronal damage precedes myocardial fibrosis in patients with Anderson-Fabry disease[J]. Eur J Nucl Med Mol Imaging, 2017, 44(13): 2266-2273. doi: 10.1007/s00259-017-3778-1
    [49] Spada M, Kasper D, Pagliardini V, et al. Metabolic progression to clinical phenotype in classic Fabry disease[J]. Ital J Pediatr, 2017, 43(1): 1. doi: 10.1186/s13052-016-0320-1
    [50] Germain DP, Elliott PM, Falissard B, et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: a systematic literature review by a European panel of experts[J]. Mol Genet Metab Rep, 2019, 19: 100454. doi: 10.1016/j.ymgmr.2019.100454
    [51] Spada M, Baron R, Elliott PM, et al. The effect of enzyme replacement therapy on clinical outcomes in paediatric patients with Fabry disease-A systematic literature review by a European panel of experts[J]. Mol Genet Metab, 2019, 126(3): 212-223. doi: 10.1016/j.ymgme.2018.04.007
    [52] Germain DP, Hughes DA, Nicholls K, et al. Treatment of Fabry's disease with the pharmacologic chaperone migalastat[J]. N Engl J Med, 2016, 375(6): 545-555. doi: 10.1056/NEJMoa1510198
    [53] Deegan PB, Goker-Alpan O, Geberhiwot T, et al. Venglustat, an orally administered glucosylceramide synthase inhibitor: assessment over 3 years in adult males with classic Fabry disease in an open-label phase 2 study and its extension study[J]. Mol Genet Metab, 2022, doi: 10.1016/j.ymgme.2022.11.002.
    [54] van der Veen SJ, Hollak CEM, van Kuilenburg ABP, et al. Developments in the treatment of Fabry disease[J]. J Inherit Metab Dis, 2020, 43(5): 908-921. doi: 10.1002/jimd.12228
  • 加载中
图(1)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  96
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-02
  • 录用日期:  2023-01-08
  • 网络出版日期:  2023-03-07

目录

    /

    返回文章
    返回