Preliminary Study on Quantitative Evaluation of Myocardial Fibrosis by CardiacMagnetic Resonance in Patients with Light Chain Cardiac Amyloidosis
-
摘要:
目的 心肌纤维化是轻链型淀粉样变性的潜在致病机制,本研究通过将心脏磁共振(CMR)心肌组织特征和形态、功能参数与68Ga-成纤维细胞激活蛋白抑制剂(FAPI)PET显像相关联,旨在探索CMR定量参数与心肌纤维化过程的相关性。 方法 选取2021年8—12月在北京协和医院确诊的轻链型心脏淀粉样变(AL-CA)患者,进行CMR和68Ga-FAPI PET/CT检查, 登记患者的临床表现及辅助检查等信息,并进行分析。 结果 共纳入23例AL-CA患者,15例(65.2%)为男性,平均年龄(58.3±6.5)岁。具有68Ga-FAPI-04高摄取的患者心肌细胞外容积(ECV)升高,明显高于阴性组患者(P=0.047),且患者的心肌ECV与心肌FAPI摄取呈正相关(r=0.628,P=0.001;r=0.727,P<0.001;r=0.661,P=0.001)。与阴性组患者相比,阳性组患者的左心室(LV)射血分数(EF)(P<0.001)减低。LVEF(r=-0.798,P<0.001;r=-0.794,P<0.001;r=-0.795,P<0.001)、右心室(RV) EF(r=-0.735,P<0.001;r=-0.739,P<0.001;r=-0.684,P<0.001)与心肌FAPI摄取呈负相关,LV周向应变(r=0.668,P<0.001;r=0.708,P<0.001;r=0.705,P<0.001)、LV纵向应变(r=0.629,P=0.001;r=0.635,P=0.001;r=0.597,P=0.003)、RV纵向应变(r=0.575,P=0.004;r=0.792,P<0.001;r=0.673,P<0.001)与心肌FAPI摄取呈负相关。 结论 FAPI反映的成纤维细胞活化伴有CMR反映的间质特征异常及其导致的心肌运动功能减低。FAPI摄取增高的AL-CA患者的ECV升高,EF减低,应力减低并形态学异常。 -
关键词:
- 心脏淀粉样变 /
- 心脏磁共振 /
- 心肌纤维化 /
- 68Ga-成纤维细胞激活蛋白抑制剂
Abstract:Objective Myocardial fibrosis is a potential mechanism of light-chain myocardial amyloidosis(AL-CA). This research aimed at exploring the correlation between multiparameter cardiac magnetic resonance (CMR) and myocardial fibrosis by relating the CMR myocardial tissue characteristics, the morphological and the functional parameters with gallium-68-labeledfibroblast activation protein inhibitor 04 positron emission tomography (68Ga-FAPI PET). Methods We gave the patients diagnosed with AL-CA in Peking Union Medical College Hospital from August to December 2021 the examinations of CMR and 68Ga-FAPI PET/CT. We recorded and analyzed the information on clinical manifestations and examinations of the patients. Results A total of 23 patients with AL-CA were included, 15 (65.2%)of which were male and the mean age was 58.3±6.5 years. Patients with high 68Ga-FAPI-04 uptake had shown growth in myocardial extracellular volume (ECV), significantly higher than those in the negative group (P=0.047). In addition, patients' myocardial ECV was positively correlated with myocardial FAPI uptake (r=0.628, P=0.001;r=0.727, P < 0.001;r=0.661, P=0.001). Patients in the positive group showd reduced left ventricular (LV) ejection fraction (EF)(P < 0.001).LVEF (r=-0.798, P < 0.001;r=-0.794, P < 0.001; r=-0.795, P < 0.001) and right ventricular (RV)EF (r=-0.735, P < 0.001;r=-0.739, P < 0.001;r=- 0.684, P < 0.001) showd negatively correlated with myocardial FAPI uptake, LV circumferential strain (r=0.668, P < 0.001;r=0.708, P < 0.001;r=0.705, P < 0.001), LV longitudinal strain (r=0.629, P=0.001;r=0.635, P=0.001; r=0.597, P=0.003), and RV longitudinal strain (r=0.575, P=0.004; r=0.792, P < 0.001;r=0.673, P < 0.001) were negatively correlated with myocardial FAPI uptake. Conclusions FAPI-related fibroblast activation is concurrent with CMR-related abnormal myocardial interstitial characteristics that leads to the decreased function of the myocardial movement. Patients with increased FAPI uptake present with increased ECV, decreased EF, and decreased strain with morphological abnormalities. -
表 1 轻链型心脏淀粉样变(AL-CA)患者临床特征及心脏磁共振(CMR)参数比较
Table 1. The clinical features and cardial magnetic resonance(CMR) parameters of the light chain cardiac amyloidosis(AL-CA) patients
指标 数值(N=23) 68Ga-FAPI-04摄取 P值 阳性组(n=17) 阴性组(n=6) 男性(例, %) 15 (65.2) 13 (76.5) 2 (33.3) 0.001 年龄(岁) 58.3±6.5 59.2±6.4 55.7±6.8 0.639 NYHA分级≥ Ⅱ(例, %) 17 (73.9) 17 (100.0) 0 (0) <0.001 梅奥分期≥ Ⅱ(例, %) 17 (73.9) 16 (94.1) 1 (16.7) <0.001 dFLC(mg/L) 251.8 (97.5,451.2) 344.6 (250.6,487.7) 55.3 (29.8,107.6) <0.001 肌钙蛋白Ⅰ(μg/L) 0.053 (0.017,0.133) 0.110 (0.028,0.162) 0.017 (0.017,0.017) 0.004 NT-proBNP(pg/mL) 2606 (191,8520) 3931 (2185,10 475) 138.5 (51.5,184.3) <0.001 native T1(ms) 1398.0±112.2 1415.2±124.8 1345.7±35.8 0.055 ECV 47.7±14.0 53.1±12.3 32.5±2.9 0.047 T2(ms) 44.5±4.3 45.6±3.7 41.7±5.0 0.149 LVEDVi(mL/m2) 71.9±13.7 73.3±13.7 68.0±14.0 0.920 LVESVi(mL/m2) 30.8 (22.5,39.0) 32.9 (29.5,40.3) 19.3 (17.2,25.9) <0.001 LVEF(%) 57.5 (46.4,67.0) 52.0 (40.7,59.0) 70.9 (66.5,71.3) <0.001 LVMi(g/m2) 76.3±25.9 85.5±23.4 50.0±9.2 0.067 左心房容积(cm2) 69.4±26.5 74.9±26.3 54.0±22.1 0.668 RVEDVi(mL/m2) 73.1±18.1 77.3±18.3 61.3±11.8 0.390 RVESVi(mL/m2) 35.3 (23.6,48.1) 41.1 (28.3,49.3) 23.1 (15.6,25.9) 0.002 RVEF(%) 51.0±14.7 46.3±14.0 64.4±5.5 0.112 RVMi(g/m2) 19.9 (14.7,26.9) 22.5 (16.7,29.3) 13.9 (10.2,15.1) 0.002 右心房容积(cm2) 73.8±26.8 82.8±24.8 48.7±13.3 0.075 LV周向应变(%) -17.3±4.93 -15.5±4.5 -22.3±1.6 0.168 LV纵向应变(%) -9.5±5.0 -7.6±4.2 -14.9±2.2 0.051 LV径向应变(%) 27.1±11.1 23.0±9,2 38.9±6.5 0.644 RV周向应变(%) -8.2 (-13.2,-5.6) -7.8 (-13.3,-5.9) -9.4 (-12.9,7.9) 0.973 RV纵向应变(%) -8.0±6.7 -5.5±5.8 -15.2±3.1 0.399 RV径向应变(%) 45.2 (25.3,71.6) 35.4 (21.1,78.4) 60.5 (54.9,76.1) 0.062 表 2 AL-CA患者生物标志物、CMR参数与PET/CT参数相关性分析
Table 2. The correlation between serum biomarkers, CMR parameters, and PET/CT parameters in AL-CA patients
指标 SUVmean SUVmax SUVR r值 P值 r值 P值 r值 P值 dFLC(mg/L) 0.607 0.002 0.603 0.002 0.541 0.008 肌钙蛋白I(μg/L) 0.386 0.069 0.336 0.117 0.366 0.086 NT-proBNP(pg/mL) 0.768 <0.001 0.722 <0.001 0.717 <0.001 native T1(ms) 0.153 0.486 0.166 0.449 0.093 0.673 ECV 0.628 0.001 0.727 <0.001 0.661 0.001 T2(ms) 0.282 0.193 0.277 0.200 0.157 0.474 LVEDVi(mL/m2) 0.260 0.231 0.271 0.211 0.231 0.288 LVESVi(mL/m2) 0.829 <0.001 0.811 <0.001 0.785 <0.001 LVEF(%) -0.798 <0.001 -0.794 <0.001 -0.795 <0.001 LVMi(g/m2) 0.524 0.010 0.620 0.002 0.602 0.002 左心房容积(cm2) 0.652 0.001 0.587 0.003 0.504 0.014 RVEDVi(mL/m2) 0.592 0.003 0.474 0.022 0.474 0.022 RVESVi(mL/m2) 0.725 <0.001 0.675 <0.001 0.626 0.001 RVEF(%) -0.735 <0.001 -0.739 <0.001 -0.684 <0.001 RVMi(g/m2) 0.664 0.001 0.583 0.004 0.470 0.024 右心房容积(cm2) 0.687 <0.001 0.661 0.001 0.615 0.002 LV周向应变(%) 0.668 <0.001 0.708 <0.001 0.705 <0.001 LV纵向应变(%) 0.629 0.001 0.635 0.001 0.597 0.003 LV径向应变(%) -0.480 0.020 -0.488 0.018 -0.535 0.009 RV周向应变(%) 0.215 0.323 0.153 0.485 -0.002 0.993 RV纵向应变(%) 0.575 0.004 0.792 <0.001 0.673 <0.001 RV径向应变(%) -0.447 0.033 -0.358 0.094 -0.272 0.210 -
[1] Tillmanns J, Hoffmann D, Habbaba Y, et al. Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction[J]. J Mol Cell Cardiol, 2015, 87: 194-203. doi: 10.1016/j.yjmcc.2015.08.016 [2] Gertz MA, Dispenzieri A. Systemic amyloidosis recognition, prognosis, and therapy: a systematic review[J]. JAMA, 2020, 324(1): 79-89. doi: 10.1001/jama.2020.5493 [3] Fontana M, Corović A, Scully P, et al. Myocardial amyloidosis: the exemplar interstitial disease[J]. JACC Cardiovasc Imaging, 2019, 12(11 Pt 2): 2345-2356. [4] Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR)and CMR Working Group of the European Society of Cardiology consensus statement[J]. J Cardiovasc Magn Reson, 2013, 15(1): 92. doi: 10.1186/1532-429X-15-92 [5] Wang X, Guo Y, Gao Y, et al. Feasibility of 68Ga-labeled fibroblast activation protein inhibitor PET/CT in light-chain cardiac amyloidosis[J]. JACC Cardiovasc Imaging, 2022, 15(11): 1960-1970. doi: 10.1016/j.jcmg.2022.06.004 [6] Pucci A, Aimo A, Musetti V, et al. Amyloid deposits and fibrosis on left ventricular endomyocardial biopsy correlate with extracellular volume in cardiac amyloidosis[J]. J Am Heart Assoc, 2021, 10(20): e020358. doi: 10.1161/JAHA.120.020358 [7] Knight DS, Zumbo G, Barcella W, et al. Cardiac structural and functional consequences of amyloid deposition by cardiac magnetic resonance and echocardiography and their prognostic roles[J]. JACC Cardiovasc Imaging, 2019, 12(5): 823-833. doi: 10.1016/j.jcmg.2018.02.016 [8] Mora V, Roldán I, Bertolín J, et al. Influence of ventricular wringing on the preservation of left ventricular ejection fraction in cardiac amyloidosis[J]. J Am Soc Echocardiogr, 2021, 34(7): 767-774. doi: 10.1016/j.echo.2021.02.016 -