药物代谢动力学指导血友病A治疗的中国专家共识
doi: 10.12376/j.issn.2097-0501.2022.04.011
杨仁池, E-mail: rcyang65@163.com
执笔: 陈振萍,刘葳,蔡力生
执笔: 陈振萍,刘葳,蔡力生
Chinese Expert Consensus on Pharmacokinetics Guided Treatment for Hemophilia A
YANG Renchi, E-mail: rcyang65@163.com
Writers: CHEN Zhenping, LIU Wei, CAI Lisheng
Writers: CHEN Zhenping, LIU Wei, CAI Lisheng
-
摘要: 血友病A是一种以凝血因子Ⅷ(FⅧ)缺乏,临床表现为自发性或者损伤后过度出血的X染色体连锁隐性遗传病。血友病A目前主要治疗方式是替代性输注FⅧ, 但对于输注的剂量、频次大多仍采用固定输注模式, 并不能达到个体化治疗原则下的最优疗效。影响FⅧ替代治疗疗效的因素中, 个体对FⅧ产品的药物代谢动力学(PK)差异是一个重要因素。临床对于PK指导下的个体化FⅧ替代治疗认知尚不充分, 因此本文就FⅧ的PK特征、分析模型、临床应用场景与具体治疗方案制定进行分析,并为临床实践提供指导意见。Abstract: Hemophilia A is an X-chromosome-linked recessive genetic disease that lacks coagulation factor Ⅷ (Factor Ⅷ, FⅧ) and is clinically manifested as spontaneous or excessive bleeding after injury.The current main treatment for hemophilia A is alternative infusion of FⅧ, but the fixed infusion mode is still used for the dosage and frequency of infusion, which cannot achieve the optimal curative effect under the principle of individualized treatment.Among the factors that affect the efficacy of FⅧ replacement therapy, the difference in the pharmacokinetics (PK) of FⅧ products by individuals is an important factor.The clinical understanding of individualized FⅧ replacement therapy under the guidance of PK is not sufficient.Therefore, this article reviews the PK characteristics, analysis models, clinical application scenarios and specific treatment plan formulation of FⅧ.
-
Key words:
- hemophilia A /
- coagulation factor Ⅷ /
- pharmacokinetics /
- personalization
-
表 1 不同PK分析方法比较
Table 1. Comparison of the different PK aralysis methods
经典的个体PK分析 基于popPK和贝叶斯算法的个体PK分析 基于经典PK改良的一室模型分析 myPKFiT WAPPS-HEMO 洗脱期 72 h 无 无 无 采样时间点 成人11个, 儿童5~6个[25] 2~3个 推荐3个, 至少1个 2个 给药剂量 50 IU/kg 推荐10~100 IU/kg 无推荐, 可用常规预防剂量 无推荐, 可用常规预防剂量 分析模型 多采用非房室模型 二室模型; 基于NONMEM软件拟合贝叶斯算法, 形成特有的Björkman模型[24] 二室模型; 基于NONMEM软件拟合贝叶斯预测[26] 一室模型[24]; 通过EXCEL计算程序 PK软件 通用PK软件、未作为医疗器械获批 国家药品监督管理局获批的医疗器械(16岁以上) 科研性质的软件, 在中国未作为医疗器械获批 未作为医疗器械获批 数据库 离线分析, 不涉及数据库 在线分析, 数据库在中国 在线分析, 数据库在加拿大 离线分析, 不涉及数据库 适用FⅧ产品 已上市的FⅧ/FⅨ产品 ADVATEa 已上市的FⅧ/FⅨ产品 已上市的FⅧ产品 建模数据 无需建模 ADVATE特有模型[27]b 多种FⅧ/FⅨ模型[23, 26]c 无需建模 PK分析时效 实时 实时 约2~3 d[26] 实时 PK模型的验证 不适用 稀疏采样数据验证模型; 进行了适用性和可信性检查; 使用不包括在构建群体PK模型中的临床研究数据进行了外部验证[17] 需进一步改进和验证所有模型[28]; 需使用稀疏采样数据验证模型[26]; 评估预测优度和可靠性需在前瞻性临床试验中评估 由于一室模型不能预测FⅧ分布相的代谢, 半衰期和峰浓度的预测会有偏差, 需进一步在前瞻性研究中验证 输出信息 Cmax、CL、Vss、t1/2lamda、AUC、MRT等PK参数 CL、Vss、t1/2、FⅧ∶C大于1%的时间和剂量计算a; 基于以上结果可以根据临床需求设定目标谷浓度(例如5%)、给药间隔, 软件可因此计算提供相应治疗方案 t1/2、至5%、2%和1%活性的时间、输注后24、48和72 h的预期血浆水平[26]; 临床计算器可制定不同谷水平的治疗方案, 或对目标方案预测其谷水平 t1/2, 预测注射FⅧ 3 h之后的活性(预测第0~3 h活性比实际活性低);可设定目标水平和输注间隔计算预防治疗方案, 围手术期FⅧ使用量计算 a参考myPKFiT用户手册第2.0.11版; b为myPKFIT建模使用2035样本, 152个体(ADVATE特有模型); 其中青少年和成人数据为1 829样本, 100个体(10~65岁); 儿童数据为206样本, 52个体(1~6岁); c为WAPPS-HEMO建模共使用878样本, 289个体(包含使用多种FⅧ/FⅨ的个体), 模型中无12岁以下儿童数据 -
[1] 中华医学会血液学分会血栓与止血学组, 中国血友病协作组. 血友病治疗中国指南(2020年版)[J]. 中华血液学杂志, 2020, 41: 265-271. doi: 10.3760/cma.j.issn.0253-2727.2020.04.001 [2] Carcao M, Srivastava A. Factor Ⅷ/factor Ⅸ prophylaxis for severe hemophilia[J]. Semin Hematol, 2016, 53: 3-9. doi: 10.1053/j.seminhematol.2015.10.006 [3] Pasca S, Milan M, Sarolo L, et al. PK-driven prophylaxis versus standard prophylaxis: when a tailored treatment may be a real and achievable cost-saving approach in children with severe hemophilia A[J]. Thromb Res, 2017, 157: 58-63. doi: 10.1016/j.thromres.2017.07.003 [4] Collins PW, Björkman S, Fischer K, et al. Factor Ⅷ requirement to maintain a target plasma level in the prophylactic treatment of severe hemophilia A: influences of variance in pharmacokinetics and treatment regimens[J]. J Thromb Haemost, 2010, 8: 269-275. doi: 10.1111/j.1538-7836.2009.03703.x [5] Björkman S. Prophylactic dosing of factor Ⅷ and factor Ⅸ from a clinical pharmacokinetic perspective[J]. Haemophilia, 2003, 9: 101-110. doi: 10.1046/j.1365-2516.9.s1.4.x [6] Ljung R, Auerswald G, Benson G, et al. Novel coagula-tion factor concentrates: issues relating to their clinical implementation and pharmacokinetic assessment for optimal prophylaxis in haemophilia patients[J]. Haemophilia, 2013, 19: 481-486. doi: 10.1111/hae.12094 [7] Ar MC, Vaide I, Berntorp E, et al. Methods for individualising factor Ⅷ dosing in prophylaxis[J]. Eur J Haematol Suppl, 2014, 76: 16-20. [8] Lee M, Morfini M, Negrier C, et al. The pharmaco-kinetics of coagulation factors[J]. Haemophilia, 2006, 12: 1-7. [9] Iorio A, Blanchette V, Blatny J, et al. Estimating and interpreting the pharmacokinetic profiles of individual patients with hemophilia A or B using a population pharmacokinetic approach: communication from the SSC of the ISTH[J]. J Thromb Haemost, 2017, 15: 2461-2465. doi: 10.1111/jth.13867 [10] Srivastava A, Santagostino E, Dougall A, et al. WFH guidelines for the management of hemophilia, 3rd edition[J]. Haemophilia, 2020, 26: 1-158. doi: 10.1111/hae.14112 [11] Collins PW, Fischer K, Morfini M, et al. Implications of coagulation factor Ⅷ and Ⅸ pharmacokinetics in the prophylactic treatment of haemophilia[J]. Haemophilia, 2011, 17: 2-10. doi: 10.1111/j.1365-2516.2010.02370.x [12] Fijnvandraat K, Peters M, ten Cate JW. Inter-individual variation in half-life of infused recombinant factor Ⅷ is related to pre-infusion von Willebrand factor antigen levels[J]. Br J Haematol, 1995, 91: 474-476. doi: 10.1111/j.1365-2141.1995.tb05325.x [13] Kepa S, Horvath B, Reitter-Pfoertner S, et al. Parameters influencing FⅧ pharmacokinetics in patients with severe and moderate haemophilia A[J]. Haemophilia, 2015, 21: 343-350. doi: 10.1111/hae.12592 [14] Chen ZP, Li PJ, Li G, et al. Pharmacokinetic studies of factor Ⅷ in Chinese boys with severe hemophilia A: a single-center study[J]. Chin Med J (Engl), 2018, 131: 1780-1785. doi: 10.4103/0366-6999.233604 [15] Tiede A, Cid AR, Goldmann G, et al. Body mass index best predicts recovery of recombinant factor Ⅷ in underweight to obese patients with severe haemophilia A[J]. Thromb Haemost, 2020, 120: 277. doi: 10.1055/s-0039-3400745 [16] Björkman S, Folkesson A, Berntorp E. In vivo recovery of factor Ⅷ and factor Ⅸ: intra-and interindividual variance in a clinical setting[J]. Haemophilia, 2007, 13: 2-8. doi: 10.1111/j.1365-2516.2006.01401.x [17] Björkman S, Folkesson A, Jönsson S. Pharmacokinetics and dose requirements of factor Ⅷ over the age range 3-74 years: a population analysis based on 50 patients with long-term prophylactic treatment for haemophilia A[J]. Eur J Clin Pharmacol, 2009, 65: 989-998. doi: 10.1007/s00228-009-0676-x [18] Valentino LA, Mamonov V, Hellmann A, et al. A randomized comparison of two prophylaxis regimens and a paired comparison of on-demand and prophylaxis treatments in hemophilia A management[J]. J Thromb Haemost, 2012, 10: 359-367. doi: 10.1111/j.1538-7836.2011.04611.x [19] Morfini M, Marchesini E, Paladino E, et al. Pharmaco-kinetics of plasma-derived vs. recombinant FⅧ concentrates: a comparative study[J]. Haemophilia, 2015, 21: 204-209. doi: 10.1111/hae.12550 [20] Carcao MD, Chelle P, Clarke E, et al. Comparative pharmacokinetics of two extended half-life FⅧ concentrates (Eloctate and Adynovate) in adolescents with hemophilia A: is there a difference?[J]. J Thromb Haemost, 2019, 17: 1085-1096. doi: 10.1111/jth.14469 [21] 周尔君, 潘雁, 朱敏, 等. 基于最大后验贝叶斯法的个体化用药研究进展[J]. 药学进展, 2020, 44: 411-417. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ202006003.htm [22] Álvarez-Román MT, Fernandez-Bello I, de la Corte-Rodríguez H, et al. Experience of tailoring prophylaxis using factor Ⅷ pharmacokinetic parameters estimated with myPKFiTⓇ in patients with severe haemophilia A without inhibitors[J]. Haemophilia, 2017, 23: e50-e54. doi: 10.1111/hae.13141 [23] Iorio A, Keepanasseril A, Foster G, et al. Development of a web-accessible population pharmacokinetic service-hemophilia (WAPPS-hemo): study protocol[J]. JMIR Res Protoc, 2016, 5: e239. doi: 10.2196/resprot.6558 [24] 蔡力生, 杨仁池, 王缨, 等. 药代动力学在A型血友病治疗中的作用[J]. 甘肃医药, 2019, 38: 143-147. [25] Morfini M. Pharmacokinetic studies: international guide-lines for the conduct and interpretation of such studies[J]. Haemophilia, 2006, 12: 6-11. doi: 10.1111/j.1365-2516.2006.01327.x [26] McEneny-King A, Foster G, Iorio A, et al. Data analysis protocol for the development and evaluation of population pharmacokinetic models for incorporation into the web-accessible population pharmacokinetic service-hemophilia (WAPPS-hemo)[J]. JMIR Res Protoc, 2016, 5: e232. doi: 10.2196/resprot.6559 [27] Björkman S, Oh M, Spotts G, et al. Population pharmacokinetics of recombinant factor Ⅷ: the relationships of pharmacokinetics to age and body weight[J]. Blood, 2012, 119: 612-618. doi: 10.1182/blood-2011-07-360594 [28] Hajducek DM, Chelle P, Hermans C, et al. Development and evaluation of the population pharmacokinetic models for FⅧ and FIX concentrates of the WAPPS-Hemo project[J]. Haemophilia, 2020, 26: 384-400. doi: 10.1111/hae.13977 [29] Dargaud Y, Delavenne X, Hart DP, et al. Individualized PK-based prophylaxis in severe haemophilia[J]. Haemophilia, 2018, 24 Suppl 2: 3-17. [30] Collins PW, Blanchette VS, Fischer K, et al. Break-through bleeding in relation to predicted factor Ⅷ levels in patients receiving prophylactic treatment for severe hemophilia A[J]. J Thromb Haemost, 2009, 7: 413-420. doi: 10.1111/j.1538-7836.2008.03270.x [31] Huang K, Chen ZP, Li G, et al. Bleeds and imaging scoring scales in relation to pharmacokinetics of coagulation factor Ⅷ in Chinese pediatric patients with severe hemophilia A[J]. Thromb Res, 2020, 193: 83-85. doi: 10.1016/j.thromres.2020.05.043 [32] Franchini M, Mannucci PM. Modifiers of clinical phenotype in severe congenital hemophilia[J]. Thromb Res, 2017, 156: 60-64. doi: 10.1016/j.thromres.2017.05.038 [33] Hermans C, Dolan G. Pharmacokinetics in routine haemo-philia clinical practice: rationale and modalities-a practical review[J]. Ther Adv Hematol, 2020, 11: 2040620720966888. [34] Valentino LA, Pipe SW, Collins PW, et al. Association of peak factor Ⅷ levels and area under the curve with bleeding in patients with haemophilia A on every third day pharmacokinetic-guided prophylaxis[J]. Haemophilia, 2016, 22: 514-520. doi: 10.1111/hae.12905 [35] Nordic Hemophilia Guidelines[EB/OL ]. (2020-01-01)[2021-04-14]. http://nordichemophiliacouncil.org/. [36] Berntorp E, Björkman S. The pharmacokinetics of clotting factor therapy[J]. Haemophilia, 2003, 9: 353-359. doi: 10.1046/j.1365-2516.2003.00762.x [37] Brackmann HH, White GC, Berntorp E, et al. Immune tolerance induction: what have we learned over time?[J]. Haemophilia, 2018, 24: 3-14. [38] Collins P, Chalmers E, Alamelu J, et al. First-line immune tolerance induction for children with severe haemophilia A: a protocol from the UK Haemophilia Centre Doctors' Organisation Inhibitor and Paediatric Working Parties[J]. Haemophilia, 2017, 23: 654-659. doi: 10.1111/hae.13264 [39] 中华医学会血液学分会血栓与止血学组, 中国血友病协作组. 凝血因子Ⅷ/Ⅸ抑制物诊断与治疗中国指南(2018年版)[J]. 中华血液学杂志, 2018, 39: 793-799. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXZ201901002.htm [40] Carlsson M, Berntorp E, Björkman S, et al. Improved cost-effectiveness by pharmacokinetic dosing of factor Ⅷ in prophylactic treatment of haemophilia A[J]. Haemophilia, 1997, 3: 96-101. [41] Iannazzo S, Cortesi PA, Crea R, et al. Cost-effectiveness analysis of pharmacokinetic-driven prophylaxis vs. standard prophylaxis in patients with severe haemophilia A[J]. Blood Coagulation Fibrinolysis, 2017, 28: 425-430. [42] Brekkan A, Degerman J, Jönsson S. Model-based evaluation of low-dose factor Ⅷ prophylaxis in haemophilia A[J]. Haemophilia, 2019, 25: 408-415. [43] Li PJ, Chen ZP, Cheng XL, et al. PK-tailored tertiary prophylaxis in patients with severe hemophilia A at Beijing Children's Hospital[J]. Pediatr Investig, 2019, 3: 45-49. -