-
摘要: 补体系统是人体的一种自我保护机制,补体系统的异常活化参与多种疾病的发生、发展。补体抑制剂的使用为很多罕见疾病,如阵发性睡眠性血红蛋白尿症(PNH)、非典型溶血尿毒综合征(aHUS)等,带来了里程碑式的进步。近年来,补体抑制剂的应用也逐渐向其他补体相关疾病领域拓展。本文结合近年文献,就补体抑制剂在较为成熟的罕见病领域的应用进行总结,也对其今后在相关罕见病领域的应用前景予以展望。
-
关键词:
- 补体抑制剂 /
- 阵发性睡眠性血红蛋白尿症 /
- 非典型溶血尿毒综合征 /
- 重症肌无力
Abstract: The complement system is a self-protection mechanism of the human body. The abnormal activation of the complement system is involved in the occurrence and development of various diseases. The application of complement inhibitors in many rare diseases was a milestone in leading to the progress of such disease as paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and others. Recently, the application of complement inhibitors has gradually expanded to other complement-related diseases. This review summarizes the literature on the current application of complement inhibitors in rare diseases and looks into the prospects of the application in the rare diseases. -
表 1 目前上市或正在进行临床试验的部分补体抑制剂
Table 1. Complement inhibitors that are approved or in clinical trials for rare diseases
补体抑制剂名称及类型 阵发性睡眠性血红蛋白尿症(PNH) 非典型溶血尿毒综合征(aHUS) C3肾小球病 重症肌无力(MG) 依库珠单抗(C5) FDA获批上市,中国指南推荐用于PNH治疗 FDA获批上市,中国指南推荐用于aHUS治疗 个案报道 获批 Ravulizumab (C5) 获批上市 Ⅲ期 Ⅲ期 Crovalimab (C5) Ⅲ期 Ⅲ期 SB12 (C5) Ⅲ期 CAN106(C5) Ⅰ期 Pozelimab+Cemdisiran (C5) Ⅰ,Ⅲ期 Zilucoplan (C5) Ⅱ,Ⅲ期 Pegcetacoplan(APL-2,C3) 获批上市 CG001(C3) Ⅰ期 Iptacopan(LNP023,B因子) Ⅲ期 Ⅲ期 Ⅲ期 Danicopan (D因子) 获批上市 Ⅱ期 BCX9930(D因子) Ⅲ期 ALXN 2050 (D因子) Ⅱ期 -
[1] Brodsky RA. Paroxysmal nocturnal hemoglobinuria[J]. Blood, 2014, 124: 2804-2811. [2] Thompson CA. FDA approves drug to treat rare hemoglobinuria[J]. Am J Health Syst Pharm, 2007, 64: 906. [3] Parker C, Omine M, Richards S, et al. Diagnosis and management of paroxysmal nocturnal hemoglobinuria[J]. Blood, 2005, 106: 3699-3709. [4] Parker CJ. Update on the diagnosis and management of paroxysmal nocturnal hemoglobinuria[J]. Hematology Am Soc Hematol Educ Program, 2016: 208-216. [5] Brodsky RA, Peffault de Latour R, Rottinghaus ST, et al. Characterization of breakthrough hemolysis events observed in the phase 3 randomized studies of ravulizumab versus eculizumab in adults with paroxysmal nocturnal hemoglobinuria[J]. Haematologica, 2021, 106: 230-237. [6] Kelly RJ, Hill A, Arnold LM, et al. Long-term treatment with eculizumab in paroxysmal nocturnal hemoglobinuria: sustained efficacy and improved survival[J]. Blood, 2011, 117: 6786-6792. doi: 10.1182/blood-2011-02-333997 [7] Hillmen P, Muus P, Röth A, et al. Long-term safety and efficacy of sustained eculizumab treatment in patients with paroxysmal nocturnal haemoglobinuria[J]. Br J Haematol, 2013, 162: 62-73. doi: 10.1111/bjh.12347 [8] Risitano AM, Marotta S. Toward complement inhibition 2.0: next generation anticomplement agents for paroxysmal nocturnal hemoglobinuria[J]. Am J Hematol, 2018, 93: 564-577. doi: 10.1002/ajh.25016 [9] Kelly RJ, Hochsmann B, Szer J, et al. Eculizumab in pregnant patients with paroxysmal nocturnal hemoglobinuria[J]. N Engl J Med, 2015, 373: 1032-1039. doi: 10.1056/NEJMoa1502950 [10] Kulasekararaj AG, Brodsky RA, Hill A. Monitoring of patients with paroxysmal nocturnal hemoglobinuria on a complement inhibitor[J]. Am J Hematol, 2021, 96: E232-E235. [11] Lee JW, Sicre de Fontbrune F, Wong Lee Lee L, et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study[J]. Blood, 2019, 133: 530-539. doi: 10.1182/blood-2018-09-876136 [12] Connell NT. Ravulizumab: a complementary option for PNH[J]. Blood, 2019, 133: 503-504. doi: 10.1182/blood-2018-12-891499 [13] Nishimura J, Yamamoto M, Hayashi S, et al. Genetic variants in C5 and poor response to eculizumab[J]. N Engl J Med, 2014, 370: 632-639. doi: 10.1056/NEJMoa1311084 [14] Röth A, Nagy Z, Gaàl-Weisinger J, et al. The complement C5 inhibitor crovalimab in paroxysmal nocturnal hemoglobinuria[J]. Blood, 2020, 135: 912-920. doi: 10.1182/blood.2019003399 [15] Jokiranta TS. HUS and atypical HUS[J]. Blood, 2017, 129: 2847-2856. doi: 10.1182/blood-2016-11-709865 [16] Loirat CA, Garnier AL, Sellier-Leclerc AL, et al. Plasma-therapy in atypical hemolytic uremic syndrome[J]. Semin Thromb Hemost, 2010, 36: 673-681. doi: 10.1055/s-0030-1262890 [17] Nürnberger J, Philipp T, Witzke O, et al. Eculizumab for atypical hemolytic-uremic syndrome[J]. N Engl J Med, 2009, 360: 542-544. doi: 10.1056/NEJMc0808527 [18] Legendre CM, Licht C, Muus P, et al. Terminal comple-ment inhibitor eculizumab in atypical hemolytic-uremic syndrome[J]. N Engl J Med, 2013, 368: 2169-2181. doi: 10.1056/NEJMoa1208981 [19] Scully M, Cataland S, Coppo P, et al. Consensus on the standardization of terminology in thrombotic thrombocyto-penic purpura and related thrombotic microangiopathies[J]. J Thromb Haemost, 2017, 15: 312-322. doi: 10.1111/jth.13571 [20] Licht C, Greenbaum LA, Muus P, et al. Efficacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies[J]. Kidney Int, 2015, 87: 1061-1073. doi: 10.1038/ki.2014.423 [21] Muff-Luett M, Sanderson KR, Engen RM, et al. Eculizu-mab exposure in children and young adults: indications, practice patterns, and outcomes-a Pediatric Nephrology Research Consortium study[J]. Pediatr Nephrol, 2021, 36: 2349-2360. doi: 10.1007/s00467-021-04965-5 [22] Ariceta G, Dixon BP, Kim SH, et al. The long-acting C5 inhibitor, ravulizumab, is effective and safe in pediatric patients with atypical hemolytic uremic syndrome naïve to complement inhibitor treatment[J]. Kidney Int, 2021, 100: 225-237. doi: 10.1016/j.kint.2020.10.046 [23] Brodsky RA. Eculizumab and aHUS: to stop or not[J]. Blood, 2021, 137: 2419-2420. doi: 10.1182/blood.2020010234 [24] Smith RJH, Appel GB, Blom AM, et al. C3 glomerulo-pathy-understanding a rare complement-driven renal disease[J]. Nat Rev Nephrol, 2019, 15: 129-143. [25] Avasare RS, Canetta PA, Bomback AS, et al. Mycopheno-late mofetil in combination with steroids for treatment of C3 glomerulopathy: a case series[J]. Clin J Am Soc Nephrol, 2018, 13: 406-413. doi: 10.2215/CJN.09080817 [26] Licht C, Weyersberg A, Heinen S, et al. Successful plasma therapy for atypical hemolytic uremic syndrome caused by factor H deficiency owing to a novel mutation in the complement cofactor protein domain 15[J]. Am J Kidney Dis, 2005, 45: 415-421. doi: 10.1053/j.ajkd.2004.10.018 [27] Schwertz R, de Jong R, Gretz N, et al. Outcome of idiopathic membranoproliferative glomerulonephritis in children. Arbeitsgemeinschaft Pädiatrische Nephrologie[J]. Acta Paediatr, 1996, 85: 308-312. doi: 10.1111/j.1651-2227.1996.tb14022.x [28] Rabasco C, Cavero T, Román E, et al. Effectiveness of mycophenolate mofetil in C3 glomerulonephritis[J]. Kidney Int, 2015, 88: 1153-1160. doi: 10.1038/ki.2015.227 [29] Nester CM, Smith RJ. Complement inhibition in C3 glomerulopathy[J]. Semin Immunol, 2016, 28: 241-249. doi: 10.1016/j.smim.2016.06.002 [30] Le Quintrec M, Lapeyraque AL, Lionet A, et al. Patterns of clinical response to eculizumab in patients with C3 glomerulopathy[J]. Am J Kidney Dis, 2018, 72: 84-92. doi: 10.1053/j.ajkd.2017.11.019 [31] Wong EK, Praga M, Nester C, et al. Iptacopan, a novel oral complement factor b(fb) inhibitor, significantly reduces proteinuria and C3 deposit scores in native and transplanted kidneys C3 glomerulopathy (C3g) patients[EB/OL ]. (2021-05)[2022-04-07]. https://academic.oup.com/ndt/article/36/Supplement_1/gfab121.005/6289319. [32] US National Library of Medicine. A proof-of-concept study of danicopan for 6 months of treatment in participants with C3 glomerulopathy (C3G). 2017[EB/OL ]. (2021-11-04)[2022-02-21]. https://clinicaltrials.gov/ct2/show/results/NCT03369236. [33] Gilhus NE, Tzartos S, Evoli A, et al. Myasthenia gravis[J]. Nat Rev Dis Primers, 2019, 5: 30. doi: 10.1038/s41572-019-0079-y [34] Howard JF, Utsugisawa K, Benatar M, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody- positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study[J]. Lancet Neurol, 2017, 16: 976-986. doi: 10.1016/S1474-4422(17)30369-1 [35] Muppidi S, Utsugisawa K, Benatar M, et al. Long-term safety and efficacy of eculizumab in generalized myasthenia gravis[J]. Muscle Nerve, 2019, 60: 14-24. [36] Narayanaswami P, Sanders DB, Wolfe G, et al. Interna-tional Consensus Guidance for Management of Myasthenia Gravis: 2020 Update[J]. Neurology, 2021, 96: 114-122. doi: 10.1212/WNL.0000000000011124 [37] Jiao L, Li H, Guo S. Eculizumab treatment for myasthenia gravis subgroups: 2021 update[J]. J Neuroimmunol, 2022, 362: 577767. doi: 10.1016/j.jneuroim.2021.577767 [38] Yeo CJJ, Pleitez MY. Eculizumab in refractory myasthenic crisis[J]. N Engl J Med, 2018, 58: E13-E15. [39] Howard JF, Nowak RJ, Wolfe GI, et al. Clinical effects of the self-administered subcutaneous complement inhibitor zilucoplan in patients with moderate to severe generalized myasthenia gravis: results of a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial[J]. JAMA Neurol, 2020, 77: 582-592. doi: 10.1001/jamaneurol.2019.5125 [40] UCB Newsroom. UCB announces positive data in myasthenia gravis with zilucoplan phase 3 study results, 2022[EB/OL ]. (2022-02-03)[2022-04-07]. https://www.ucb.com/stories-media/Press-Releases/article/UCB-announces-posi-tive-data-in-myasthenia-gravis-with-zilucoplan-phase-3-study-results. [41] Tuan Vu, Andreas M, Renato M, et al. Efficacy and safety of ravulizumab, a long-acting terminal complement inhibitor, in adults with anti- acetylcholine receptor antibody-positive generalized myasthenia gravis: results from the phase 3 CHAMPION MG study[EB/OL ]. (2022-04-07)[2022-05-10]. https://index.mirasmart.com/aan2022/PDFfiles/AAN2022-000791.html. [42] Howard JF, Tuan Vu, Mantegazza R, et al. Long-term efficacy and safety of ravulizumab, a long-acting terminal complement inhibitor, in adults with anti-acetylcholine receptor antibody-positive generalized myasthenia gravis: results from the phase 3 CHAMPION MG open-label extension[EB/OL ]. (2022-04-07)[2022-05-10]. https://index.mirasmart.com/aan2022/PDF-files/AAN2022-000853.html. [43] US National Library of Medicine. Safety and efficacy study of ravulizumab in adults with generalized myasthenia gravis. 2019[EB/OL ]. (2022-05-26)[2022-07-04]. https://www.clinicaltrials.gov/ct2/show/NCT03920293. [44] Zyl T, Weyne J, Chaudhari U, et al. Interim analysis of an open-label, ascending-dose, phase 1 study of the safety, tolerability, pharmacokinetics, and pharmacodyna-mics of single doses of the subcutaneously administered human monoclonal antibody pozelimab in combination with single doses of the subcutaneously administered siRNA cemdisiran in healthy volunteers[J]. Blood, 2021, 138: 1998. -