留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免疫出生错误基于发病机制的精准治疗

舒洲 毛华伟

舒洲, 毛华伟. 免疫出生错误基于发病机制的精准治疗[J]. 罕见病研究, 2022, 1(3): 245-251. doi: 10.12376/j.issn.2097-0501.2022.03.004
引用本文: 舒洲, 毛华伟. 免疫出生错误基于发病机制的精准治疗[J]. 罕见病研究, 2022, 1(3): 245-251. doi: 10.12376/j.issn.2097-0501.2022.03.004
SHU Zhou, MAO Huawei. Pathogenesis based Precision Therapy for Inborn Errors of Immunity[J]. Journal of Rare Diseases, 2022, 1(3): 245-251. doi: 10.12376/j.issn.2097-0501.2022.03.004
Citation: SHU Zhou, MAO Huawei. Pathogenesis based Precision Therapy for Inborn Errors of Immunity[J]. Journal of Rare Diseases, 2022, 1(3): 245-251. doi: 10.12376/j.issn.2097-0501.2022.03.004

免疫出生错误基于发病机制的精准治疗

doi: 10.12376/j.issn.2097-0501.2022.03.004
基金项目: 

国家自然科学基金面上项目 81971547

北京市教育委员会科学研究计划项目 KZ202210025030

详细信息
    通信作者:

    毛华伟,E-mail:maohwei@qq.com

  • 中图分类号: R725.9

Pathogenesis based Precision Therapy for Inborn Errors of Immunity

Funding: 

National Natural Science Foundation of China 81971547

Beijing Municipal Education Commission KZ202210025030

More Information
  • 摘要: 精准医学是通过分析疾病发病机制寻找特异生物学标志物,并进行靶向治疗的学科。免疫出生错误是一类单基因突变导致的疾病,是研究免疫学机制的适宜人体模型。近年来随着科技日新月异,人类对免疫出生错误的临床表现型与基因型、基因型与特定靶点的认识越来越清楚,因此,为临床医务人员按照精准医学的原则诊断和治疗此类疾病提供了机遇。目前,针对免疫出生错误的精准治疗已有很多成功的范例,具有治疗疾病本质的优点。本文着重阐述了几类免疫出生错误病的精准治疗。

     

  • 表  1  免疫出生错误药物精准治疗

    Table  1.   Precise therapies used in the treatment of inborn errors of immunity

    药物 靶点 分子结构 适应证 超适应证用药
    西罗莫司 mTOR 大环内酯复合物 肾移植排异
    淋巴管平滑肌瘤
    NLCR4-GOF
    POMP缺陷
    CTLA4单倍剂量不足
    APDS
    阿巴西普 B7-1 (CD80), B7-2 (CD86) CTLA4 IgG融合蛋白 RA
    JIA
    CTLA4单倍剂量不足
    LRBA缺陷
    贝拉西普 B7-1 (CD80), B7-2 (CD86) CTLA4融合蛋白 CTLA4单倍剂量不足
    阿那白滞素 IL-1R 重组人
    IL-1R拮抗剂
    RA
    JIA
    CAPS
    卡那单抗 IL-1β 抗人IL-1 IgG1 mAb CAPS
    FCAS
    MWS
    DIRA
    列洛西普 IL-1β 双特异性的人源IgG1 Fc抗体 CAPS
    FCAS
    MWS
    DIRA
    托珠单抗 IL-6R 重组人源IgG1κ mAb RA
    JIA
    STAT3-GOF
    依那西普 TNF-α 融合蛋白 RA
    JIA
    银屑病关节炎
    斑片银屑病
    SAVI
    CANDLE综合征
    POMP缺陷
    PAPA综合征
    Blau综合征
    英夫利昔单抗 TNF-α 嵌合mAb 克罗恩病
    UC
    RA
    AS
    银屑病关节炎
    斑片银屑病
    SAVI
    CANDLE综合征
    POMP缺陷
    PAPA综合征
    Blau综合征
    阿达木单抗 TNF-α 人源mAb RA
    JIA
    银屑病关节炎
    斑片银屑病
    克罗恩病
    SAVI
    CANDLE综合征
    POMP缺陷
    PAPA综合征
    Blau综合征
    芦可替尼 JAK1,JAK2 小分子抑制剂 骨髓纤维化红细胞增生症 STAT3-GOF
    STAT1-GOF
    CANDLE综合征
    托法替布 JAK1,JAK3 小分子抑制剂 RA
    JIA
    STAT3-GOF
    STAT1-GOF
    CANDLE综合征
    巴瑞替尼 JAK1,JAK2 小分子抑制剂 RA STAT1-GOF
    CANDLE综合征
    干扰素单抗 抗体IFN-γ 人源化mAb NA HLH
    他德白介素α IL-18结合蛋白 重组人白介素IL-18结合蛋白 NA NLCR4-GOF
    优特克单抗 IL-12,IL-23 P40亚基 IgG1κ mAb 银屑病 LAD
    CGD肠炎
    Leniolisib PI3Kδ 小分子抑制剂 NA APDS
    mTOR:雷帕霉素靶蛋白;NLCR4-GOF:NLCR4增功能突变;CTLA4:细胞毒性T淋巴细胞相关抗原-4;APDS:PI3Kδ过度活化综合征;B7:B7家族分子成员;RA:类风湿关节炎;JIA:幼年特发性关节炎;IL-1R:白介素1受体;CAPS:冷炎素相关周期性综合征;FCAS:家族性寒冷型自身炎症综合征;MWS:Muckle-Wells综合征;DIRA:IL-1受体拮抗剂缺陷;IL-6R:白介素6受体;STAT-GOF:STAT增功能突变;SAVI:婴儿起病的STING相关血管病;CANDLE:非典型慢性中性粒细胞与脂肪代谢障碍性皮肤病和高体温综合征;PAPA:化脓性关节炎、坏疽性脓皮病和痤疮;UC:溃疡性结肠炎;AS:强直性脊柱炎;JAK:酪氨酸蛋白激酶;NA:无应用;HLH:家族性噬血细胞综合征;LAD:白细胞粘附分子缺陷;CGD:慢性肉芽肿病;PI3Kδ:磷脂酰激酶δ
    下载: 导出CSV
  • [1] 中华医学会儿科学分会免疫学组. 原发性免疫缺陷病的早期识别线索(征求意见稿)[J]. 中华儿科杂志, 2015, 53: 893-897. doi: 10.3760/cma.j.issn.0578-1310.2015.12.005
    [2] Collins FS, Varmus H. A new initiative on precision medicine[J]. N Engl J Med, 2015, 372: 793-795. doi: 10.1056/NEJMp1500523
    [3] Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee[J]. J Clin Immunol, 2020, 40: 24-64. doi: 10.1007/s10875-019-00737-x
    [4] Espanol T, Prevot J, Drabwell J, et al. Improving current immunoglobulin therapy for patients with primary immunodeficiency: quality of life and views on treatment[J]. Patient Prefer Adherence, 2014, 8: 621-629.
    [5] Swanson KV, Deng M, Ting JP. The NLRP3 inflamma-some: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19: 477-489. doi: 10.1038/s41577-019-0165-0
    [6] Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance[J]. J Cell Sci, 2017, 130: 3955-3963. doi: 10.1242/jcs.207365
    [7] Cuisset L, Drenth JP, Berthelot JM, et al. Genetic linkage of the muckle-wells syndrome to chromosome 1q44[J]. Am J Hum Genet, 1999, 65: 1054-1059. doi: 10.1086/302589
    [8] Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation[J]. Nat Genet, 2014, 46: 1135-1139. doi: 10.1038/ng.3066
    [9] Hoffman HM, Rosengren S, Boyle DL, et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist[J]. Lancet, 2004, 364: 1779-1785. doi: 10.1016/S0140-6736(04)17401-1
    [10] Benedetti F, Gattorno M, Anton J, et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes[J]. N Engl J Med, 2018, 378: 1908-1919. doi: 10.1056/NEJMoa1706314
    [11] Curran MP. Canakinumab: in patients with cryopyrin-associated periodic syndromes[J]. Bio Drugs, 2012, 26: 53-59.
    [12] Hoffman HM, Throne ML, Amar NJ, et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies[J]. Arthritis Rheum, 2008, 58: 2443-2452. doi: 10.1002/art.23687
    [13] Canna SW, Girard C, Malle L, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition[J]. J Allergy Clin Immunol, 2017, 139: 1698-1701. doi: 10.1016/j.jaci.2016.10.022
    [14] S nmez HE, Karaaslan C, de Jesus AA, et al. A clinical score to guide in decision making for monogenic type Ⅰ IFNopathies[J]. Pediatr Res, 2020, 87: 745-752. doi: 10.1038/s41390-019-0614-2
    [15] Rice GI, Melki I, Frémond ML, et al. Assessment of type Ⅰ interferon signaling in pediatric inflammatory disease[J]. J Clin Immunol, 2017, 37: 123-132. doi: 10.1007/s10875-016-0359-1
    [16] Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies[J]. J Clin Invest, 2018, 128: 3041-3052. doi: 10.1172/JCI98814
    [17] Haag SM, Gulen MF, Reymond L, et al. Targeting STING with covalent small-molecule inhibitors[J]. Nature, 2018, 559: 269-273. doi: 10.1038/s41586-018-0287-8
    [18] Ben-Skowronek I. IPEX Syndrome: Genetics and treatment options[J]. Genes (Basel), 2021, 12: 323. doi: 10.3390/genes12030323
    [19] Passerini L, Barzaghi F, Curto R, et al. Treatment with rapamycin can restore regulatory T-cell function in IPEX patients[J]. J Allergy Clin Immunol, 2020, 145: 1262-1271. doi: 10.1016/j.jaci.2019.11.043
    [20] Schwab C, Gabrysch A, Olbrich P, et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects[J]. J Allergy Clin Immunol, 2018, 142: 1932-1946. doi: 10.1016/j.jaci.2018.02.055
    [21] Lee S, Moon JS, Lee CR, et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4[J]. J Allergy Clin Immunol, 2016, 137: 327-330. doi: 10.1016/j.jaci.2015.08.036
    [22] Yang L, Xue X, Chen X, et al. Abatacept is effective in Chinese patients with LRBA and CTLA4 deficiency[J]. Genes Dis, 2020, 8: 662-668.
    [23] Lo B, Zhang K, Lu W, et al. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy[J]. Science, 2015, 349: 436-440.
    [24] Jamee M, Hosseinzadeh S, Sharifinejad N, et al. Comprehensive comparison between 222 CTLA-4 haploinsufficiency and 212 LRBA deficiency patients: a systematic review[J]. Clin Exp Immunol, 2021, 205: 28-43. doi: 10.1111/cei.13600
    [25] Angulo I, Vadas O, Garçon F, et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage[J]. Science, 2013, 342: 866-871. doi: 10.1126/science.1243292
    [26] Rao VK, Webster S, Dalm VASH, et al. Effective "activated PI3Kdelta syndrome"-targeted therapy with the PI3Kdelta inhibitor leniolisib[J]. Blood, 2017, 130: 2307-2316. doi: 10.1182/blood-2017-08-801191
    [27] Etzioni A. Genetic etiologies of leukocyte adhesion defects[J]. Curr Opin Immunol, 2009, 21: 481-486. doi: 10.1016/j.coi.2009.07.005
    [28] Moutsopoulos NM, Zerbe CS, Wild T, et al. Interleukin-12 and interleukin-23 blockade in leukocyte adhesion deficiency type 1[J]. N Engl J Med, 2017, 376: 1141-1146. doi: 10.1056/NEJMoa1612197
    [29] Dunbar CE, High KA, Joung JK, et al. Gene therapy comes of age[J]. Science, 2018, 359: eaan4672. doi: 10.1126/science.aan4672
    [30] Poletti V, Charrier S, Corre G, et al. Preclinical development of a lentiviral vector for gene therapy of X-linked severe combined immunodeficiency[J]. Mol Ther Methods Clin Dev, 2018, 9: 257-269. doi: 10.1016/j.omtm.2018.03.002
    [31] Yeo NC, Chavez A, Lance-Byrne A, et al. An enhanced CRISPR repressor for targeted mammalian gene regulation[J]. Nat Methods, 2018, 15: 611-616. doi: 10.1038/s41592-018-0048-5
  • 加载中
表(1)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  68
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-09
  • 录用日期:  2022-06-24
  • 网络出版日期:  2022-09-06

目录

    /

    返回文章
    返回