[1] |
Arno PS, Bonuck K, Davis M. Rare diseases, drug development, and AIDS: the impact of the Orphan Drug Act[J]. Milbank Q, 1995, 73: 231-252. doi: 10.2307/3350258
|
[2] |
Franco P. Orphan drugs: the regulatory environment[J]. Drug Discov Today, 2013, 18: 163-172. doi: 10.1016/j.drudis.2012.08.009
|
[3] |
Nguengang Wakap S, Lambert DM, Olry A, et al. Estimat-ing cumulative point prevalence of rare diseases: analysis of the Orphanet database[J]. Eur J Hum Genet, 2020, 28: 165-173. doi: 10.1038/s41431-019-0508-0
|
[4] |
Li X, Lu Z, Zhang J, et al. The urgent need to empower rare disease organizations in China: an interview-based study[J]. Orphanet J Rare Dis, 2020, 15: 282. doi: 10.1186/s13023-020-01568-5
|
[5] |
Wang JB, Guo JJ, Yang L, et al. Rare diseases and legislation in China[J]. Lancet, 2010, 375: 708-709. doi: 10.1016/S0140-6736(10)60240-1
|
[6] |
Rare Diesease Impact Report: Insights from patients and the medical community Shire2013[J/OL]. https://globalgenes.org/wpcontent/uploads/2013/04/ShireReport-1.pdf.
|
[7] |
Yan X, He S, Dong D. Determining how far an adult rare disease patient needs to travel for a definitive diagnosis: A cross-sectional examination of the 2018 national rare disease survey in China[J]. Int J Environ Res Public Health, 2020, 17: 1757. doi: 10.3390/ijerph17051757
|
[8] |
Schaefer J, Lehne M, Schepers J, et al. The use of machine learning in rare diseases: a scoping review[J]. Orphanet J Rare Dis, 2020, 15: 145. doi: 10.1186/s13023-020-01424-6
|
[9] |
Gong S, Wang Y, Pan X, et al. The availability and affordability of orphan drugs for rare diseases in China[J]. Orphanet J Rare Dis, 2016, 11: 20. doi: 10.1186/s13023-016-0392-4
|
[10] |
Ramesh AN, Kambhampati C, Monson JR, et al. Artificial intelligence in medicine[J]. Ann R Coll Surg Engl, 2004, 86: 334-338.
|
[11] |
Barbour AB, Frush JM, Gatta LA, et al. Artificial intelligence in health care: insights from an educational forum[J]. J Med Educ Curric Dev, 2019, 6: 2382120519889348.
|
[12] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542: 115-118. doi: 10.1038/nature21056
|
[13] |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316: 2402-2410. doi: 10.1001/jama.2016.17216
|
[14] |
Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare[J]. Nat Biomed Eng, 2018, 2: 719-731. doi: 10.1038/s41551-018-0305-z
|
[15] |
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18: 500-510. doi: 10.1038/s41568-018-0016-5
|
[16] |
Jha S, Topol EJ. Adapting to artificial intelligence: radiologists and pathologists as information specialists[J]. JAMA, 2016, 316: 2353-2354. doi: 10.1001/jama.2016.17438
|
[17] |
Yu KH, Levine DA, Zhang H, et al. Predicting ovarian cancer patients' clinical response to platinum-based chemotherapy by their tumor proteomic signatures[J]. J Proteome Res, 2016, 15: 2455-2465. doi: 10.1021/acs.jproteome.5b01129
|
[18] |
Yu KH, Fitzpatrick MR, Pappas L, et al. Omics analysis system for precision oncology (OASISPRO): a web-based omics analysis tool for clinical phenotype prediction[J]. Bioinformatics, 2018, 34: 319-320. doi: 10.1093/bioinformatics/btx572
|
[19] |
Hayden EC. The automated lab[J]. Nature, 2014, 516: 131-132. doi: 10.1038/516131a
|
[20] |
Lasker JN, Sogolow ED, Sharim RR. The role of an online community for people with a rare disease: content analysis of messages posted on a primary biliary cirrhosis mailinglist[J]. J Med Internet Res, 2005, 7: e10. doi: 10.2196/jmir.7.1.e10
|
[21] |
Rajkomar A, Dean J, Kohane I. Machine learning in medicine[J]. N Engl J Med, 2019, 380: 1347-1358. doi: 10.1056/NEJMra1814259
|
[22] |
Alirezaie N, Kernohan KD, Hartley T, et al. ClinPred: prediction tool to identify disease-relevant nonsynonymous single-nucleotide variants[J]. Am J Hum Genet, 2018, 103: 474-483. doi: 10.1016/j.ajhg.2018.08.005
|
[23] |
Papadimitriou S, Gazzo A, Versbraegen N, et al. Predicting disease-causing variant combinations[J]. Proc Natl Acad Sci USA, 2019, 116: 11878-11887. doi: 10.1073/pnas.1815601116
|
[24] |
Bosio M, Drechsel O, Rahman R, et al. eDiVA-classifica-tion and prioritization of pathogenic variants for clinical diagnostics[J]. Hum Mutat, 2019, 40: 865-878. doi: 10.1002/humu.23772
|
[25] |
Boudellioua I, Kulmanov M, Schofield PN, et al. Deep-PVP: phenotype-based prioritization of causative variants using deep learning[J]. BMC Bioinformatics, 2019, 20: 65. doi: 10.1186/s12859-019-2633-8
|
[26] |
Rao A, Vg S, Joseph T, et al. Phenotype-driven gene prioritization for rare diseases using graph convolution on heterogeneous networks[J]. BMC Med Genomics, 2018, 11: 57. doi: 10.1186/s12920-018-0372-8
|
[27] |
Smpokou P, Lanpher BC, Rosenbaum KN. Important considerations in the initial clinical evaluation of the dysmorphic neonate[J]. Adv Neonatal Care, 2015, 15: 248-252. doi: 10.1097/ANC.0000000000000216
|
[28] |
Gurovich Y, Hanani Y, Bar O, et al. Identifying facial phenotypes of genetic disorders using deep learning[J]. Nat Med, 2019, 25: 60-64. doi: 10.1038/s41591-018-0279-0
|
[29] |
Brasil S, Pascoal C, Francisco R, et al. Artificial intelli-gence (AI) in rare diseases: is the future brighter?[J]. Genes (Basel), 2019, 10: 978. doi: 10.3390/genes10120978
|
[30] |
Xu K, Yang Z, Kang P, et al. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition[J]. Comput Biol Med, 2019, 108: 122-132. doi: 10.1016/j.compbiomed.2019.04.002
|
[31] |
Bhasuran B, Murugesan G, Abdulkadhar S, et al. Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases[J]. J Biomed Inform, 2016, 64: 1-9. doi: 10.1016/j.jbi.2016.09.009
|
[32] |
Kaminsky EB, Kaul V, Paschall J, et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities[J]. Genet Med, 2011, 13: 777-784. doi: 10.1097/GIM.0b013e31822c79f9
|
[33] |
Yang X, Song Z, Wu C, et al. Constructing a database for the relations between CNV and human genetic diseases via systematic text mining[J]. BMC Bioinformatics, 2018, 19(Suppl 19): 528.
|
[34] |
Shen F, Liu S, Wang Y, et al. Utilization of electronic medical records and biomedical literature to support the diagnosis of rare diseases using data fusion and collaborative filtering approaches[J]. JMIR Med Inform, 2018, 6: e11301. doi: 10.2196/11301
|
[35] |
Kaufmann P, Pariser AR, Austin C. From scientific discovery to treatments for rare diseases-the view from the national center for advancing translational sciences - office of rare diseases research[J]. Orphanet J Rare Dis, 2018, 13: 196. doi: 10.1186/s13023-018-0936-x
|
[36] |
Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs[J]. Nature, 2009, 462: 175-181. doi: 10.1038/nature08506
|
[37] |
Lee YS, Krishnan A, Oughtred R, et al. A computational framework for genome-wide characterization of the human disease landscape[J]. Cell Syst, 2019, 8: 152-162. doi: 10.1016/j.cels.2018.12.010
|
[38] |
Geva A, Gronsbell JL, Cai T, et al. A computable phenotype improves cohort ascertainment in a pediatric pulmonary hypertension registry[J]. J Pediatr, 2017, 188: 224-231. doi: 10.1016/j.jpeds.2017.05.037
|
[39] |
Blasco H, Patin F, Descat A, et al. A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression[J]. PLoS One, 2018, 13: e0198116. doi: 10.1371/journal.pone.0198116
|
[40] |
Lagrue E, Madji Hounoum B, Rullier C, et al. Cerebro-spinal fluid metabolomics in west syndrome: Central role of the serine metabolic pathway[J]. J Transl Sci, 2018, 4: e101.
|
[41] |
Carlier A, Vasilevich A, Marechal M, et al. In silico clinical trials for pediatric orphan diseases[J]. Sci Rep, 2018, 8: 2465. doi: 10.1038/s41598-018-20737-y
|
[42] |
Combi C, Pozzani G, Pozzi G. Telemedicine for developing countries. A survey and some design issues[J]. Appl Clin Inform, 2016, 7: 1025-1050. doi: 10.4338/ACI-2016-06-R-0089
|
[43] |
Ekeland AG, Bowes A, Flottorp S. Effectiveness of telemedicine: a systematic review of reviews[J]. Int J Med Inform, 2010, 79: 736-771. doi: 10.1016/j.ijmedinf.2010.08.006
|
[44] |
Greis C, Maul LV, Hsu C, et al. Artificial intelligence to support telemedicine in Africa[J]. Hautarzt, 2020, 71: 686-990. doi: 10.1007/s00105-020-04664-6
|
[45] |
Lucey CR, Johnston SC. The transformational effects of COVID-19 on medical education[J]. JAMA, 2020, 324: 1033-1034. doi: 10.1001/jama.2020.14136
|
[46] |
Sinha S, Kern LM, Gingras LF, et al. Implementation of video visits during COVID-19: lessons learned from a primary care practice in New York City[J]. Front Public Health, 2020, 8: 514. doi: 10.3389/fpubh.2020.00514
|
[47] |
Chen LK, Yuan RP, Ji XJ, et al. Modular composite building in urgent emergency engineering projects: a case study of accelerated design and construction of Wuhan Thunder God Mountain/Leishenshan hospital to COVID-19 pandemic[J]. Autom Constr, 2021, 124: 103555. doi: 10.1016/j.autcon.2021.103555
|
[48] |
Shaw J, Rudzicz F, Jamieson T, et al. Artificial intelligence and the implementation challenge[J]. J Med Internet Res, 2019, 21: e13659. doi: 10.2196/13659
|
[49] |
Samek W, Wiegand T, Müller KR. Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models[J]. arXiv preprint arXiv: 170808296, 2017.
|
[50] |
Greenhalgh T, Howick J, Maskrey N. Evidence based medicine: a movement in crisis? [J]. BMJ, 2014, 348: 3725. doi: 10.1136/bmj.g3725
|
[51] |
Ford RA, Price W, Nicholson I. Privacy and accountability in black-box medicine[J]. Mich Telecomm Tech L Rev, 2016, 23: 1.
|
[52] |
Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database[J]. NPJ Digit Med, 2020, 3: 118. doi: 10.1038/s41746-020-00324-0
|
[53] |
Molnar C, Casalicchio G, Bischl B. Interpretable machine learning-a brief history, state-of-the-art and challenges[J]. arXiv preprint arXiv: 09337, 2010.
|
[54] |
Gostin LO, Halabi SF, Wilson K. Health data and privacy in the digital era[J]. JAMA, 2018, 320: 233-234. doi: 10.1001/jama.2018.8374
|
[55] |
Grundy Q, Held FP, Bero LA. Tracing the potential flow of consumer data: A network analysis of prominent health and fitness apps[J]. J Med Internet Res, 2017, 19: e233. doi: 10.2196/jmir.7347
|
[56] |
Culnane C, Rubinstein BI, Teague V. Health data in an open world[J]. arXiv preprint arXiv: 171205627, 2017.
|
[57] |
Gong M, Wang S, Wang L, et al. Evaluation of privacy risks of patients' data in China: Case study[J]. JMIR Med Inform, 2020, 8: e13046. doi: 10.2196/13046
|
[58] |
Festag S, Spreckelsen C. Privacy-preserving deep learning for the detection of protected health information in real-world data: comparative evaluation[J]. JMIR Form Res, 2020, 4: e14064. doi: 10.2196/14064
|
[59] |
Zhang W, Wang Q, Li M. Privacy-preserving collaborative training for medical image analysis based on multi-blockchain[J]. Comb Chem High Throughput Screen, 2021, 24: 933-946. doi: 10.2174/1386207323666201022110616
|
[60] |
Sun M, Tang F, Yi J, et al. Identify susceptible locations in medical records via adversarial attacks on deep predictive models[J]. arXiv preprint arXiv: 1802.04822.
|
[61] |
Finlayson SG, Bowers JD, Ito J, et al. Adversarial attacks on medical machine learning[J]. Science, 2019, 363: 1287-1289. doi: 10.1126/science.aaw4399
|
[62] |
Gianfrancesco MA, Tamang S, Yazdany J, et al. Potential biases in machine learning algorithms using electronic health record data[J]. JAMA Intern Med, 2018, 178: 1544-1547. doi: 10.1001/jamainternmed.2018.3763
|
[63] |
Mittelstadt BD, Allo P, Taddeo M, et al. The ethics of algorithms: mapping the debate[J]. Big Data Society, 2016, 3: 2053951716679679.
|
[64] |
Abrams C. Google's effort to prevent blindness shows AI challenges[J]. The Wall Street J, 2019, 1: 26.
|
[65] |
Straw I, Callison-Burch C. Artificial Intelligence in mental health and the biases of language based models[J]. PLoS One, 2020, 15: e0240376. doi: 10.1371/journal.pone.0240376
|
[66] |
Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges[J]. J Dent Res, 2020, 99: 769-774. doi: 10.1177/0022034520915714
|
[67] |
Khullar DAI. Could worsen health disparities[N]. New York Times, 2019-1-31.
|
[68] |
Hripcsak G, Duke JD, Shah NH, et al. Observational health data sciences and informatics (OHDSI): opportunities for observational researchers[J]. Stud Health Technol Inform, 2015, 216: 574-578.
|
[69] |
Xiao C, Choi E, Sun J. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review[J]. J Am Med Inform Assoc, 2018, 25: 1419-1428. doi: 10.1093/jamia/ocy068
|
[70] |
Kingma DP, Welling M. Auto-encoding variational bayes[J]. arXiv preprint arXiv: 13126114, 2013.
|
[71] |
Nelson GS. Bias in artificial intelligence[J]. N C Med J, 2019, 80: 220-222.
|
[72] |
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predicting splicing from primary sequence with deep learning[J]. Cell, 2019, 176: 535-548. doi: 10.1016/j.cell.2018.12.015
|
[73] |
Wang F, Preininger A. AI in health: state of the art, challenges, and future directions[J]. Yearb Med Inform, 2019, 28: 16-26. doi: 10.1055/s-0039-1677908
|
[74] |
Austin CP, Cutillo CM, Lau LPL, et al. Future of rare diseases research 2017—2027: an IRDiRC perspective[J]. Clin Transl Sci, 2018, 11: 21-27. doi: 10.1111/cts.12500
|
[75] |
Han J, Cui Y, Zhou X. Rare diseases research in China: opportunities, challenges, and solutions[J]. Intractable Rare Dis Res, 2012, 1: 10-12.
|
[76] |
Austin CP, Dawkins HJS. Medical research: next decade's goals for rare diseases[J]. Nature, 2017, 548: 158.
|