留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脊髓性肌萎缩症的昨天、今天与明天

戴毅 崔丽英

戴毅, 崔丽英. 脊髓性肌萎缩症的昨天、今天与明天[J]. 罕见病研究, 2022, 1(1): 28-33. doi: 10.12376/j.issn.2097-0501.2022.01.005
引用本文: 戴毅, 崔丽英. 脊髓性肌萎缩症的昨天、今天与明天[J]. 罕见病研究, 2022, 1(1): 28-33. doi: 10.12376/j.issn.2097-0501.2022.01.005
DAI Yi, CUI Liying. Spinal Muscular Atrophy: History, Current Status and Future[J]. Journal of Rare Diseases, 2022, 1(1): 28-33. doi: 10.12376/j.issn.2097-0501.2022.01.005
Citation: DAI Yi, CUI Liying. Spinal Muscular Atrophy: History, Current Status and Future[J]. Journal of Rare Diseases, 2022, 1(1): 28-33. doi: 10.12376/j.issn.2097-0501.2022.01.005

脊髓性肌萎缩症的昨天、今天与明天

doi: 10.12376/j.issn.2097-0501.2022.01.005
详细信息
    通信作者:

    崔丽英,E-mail: pumchcuily@sina.com

  • 中图分类号: R741

Spinal Muscular Atrophy: History, Current Status and Future

More Information
  • 摘要: 脊髓性肌萎缩症(spinal muscular atrophy, SMA)从医学文献中的首例病例报道至今已跨越百年。在这百余年的发展历程中,SMA经历了临床描述、病例积累、疾病分型探索、致病基因定位与克隆、基因诊断临床应用、动物模型建立、疾病修正治疗药物研发与患者使用等诸多阶段,未来SMA还要向发病机制研究、携带者筛查与精准预防, 以及新治疗探索等方向发展。作为单基因遗传病的代表,回顾SMA诊治进步历程、新药研发过程和未来发展方向,有助于引领和带动整个罕见病领域的进步,助推罕见病事业不断向前发展。

     

  • [1] Werdnig G. Zwei frühinfantilehereditäre Fälle von progres-siver muskelatrophieunter dem bilde der dystrophie, aber auf neurotischer grundlage[J]. Archiv fur Psychiatrie und Nervenkrankheiten, Berlin 1891;22: 437-481. doi: 10.1007/BF01776636
    [2] Werdnig G. Die frühinfantile progressive spinale Amyotro-phie[J]. Archiv fur Psychiatrie und Nervenkrankheiten, Berlin, 1894, 26: 707-744. http://www.springerlink.com/content/h3n28m71q75292j6/
    [3] Hoffmann J. Vberchronischespinale muskelatrophieim kindesalter auf familiärer basis[J]. Deut Zeitsch Nervenheilkd, 1893, 3: 427-470. doi: 10.1007/BF01668496
    [4] Hoffmann J. WeitererB eiträgezur lehre von der hereditären progressiven spinalen muskelatrophieim kindesalter[J]. Deut Zeitsch Nervenheilkd, 1897, 10: 292-320. doi: 10.1007/BF01668174
    [5] Hoffmann J. Dritter Eitragzur Lehre von der hereditären progressiven spinalen muskelatrophieim kindes-alter[J]. Deut Zeitsch Nervenheilkd, 1900, 18: 217-224. doi: 10.1007/BF01635796
    [6] Thomson J, Bruce A. Progressive muscular atrophy in a child with a spinal lesion[J]. Edinb Hosp Rep, 1893, 1: 372.
    [7] Beevor CE. A case of congenital spinal muscular atrophy (family type) and a case of hemorrhage into the spinal cord at birth, giving similar symptoms[J]. Brain, 1902, 25: 85-108. doi: 10.1093/brain/25.1.85
    [8] Sylvestre M. Paralysieflasque de quatre membres et des muscles du tronc (sauf le diaphragme) chez un nouveau-né[J]. Bull Soc Pediatr Paris, 1899, 1: 3-10.
    [9] Kugelberg E, Welander L. Heredofamilial juvenile muscular atrophy simulating muscular dystrophy[J]. Arch Neurol Psychiatry (Chic), 1956, 75: 500-509. doi: 10.1001/archneurpsyc.1956.02330230050005
    [10] Wohlfart G, Fex J, Eliasson S. Hereditary proximal spinal muscular atrophy-a clinical entity simulating progressive muscular dystrophy[J]. Acta Psychiatr Neurol (Kjobenhavn), 1955, 30: 395-406.
    [11] Dubowitz V. Infantile muscular atrophy. A prospective study with particular reference to a slowly progressive variety[J]. Brain, 1964, 87: 707-718. doi: 10.1093/brain/87.4.707
    [12] Dubowitz V. Infantile muscular atrophy-a broad spectrum[J]. Clin Proc Child Hosp WA, 1967, 23: 223-239.
    [13] Dubowitz V. Ramblings in the history of spinal muscular atrophy[J]. Neuromuscul Disord, 2009, 19: 69-73. doi: 10.1016/j.nmd.2008.10.004
    [14] Brandt S. Werdnig-Hoffmann's infantile progressive muscular atrophy[J]. Opera ex domo biologiaehereditariaehumanae universitatis hafniensis, vol. 22. Copenhagen: EjnarMunksgaard, 1950.
    [15] 张效春, 钟绥苹, 张桂欣. 婴儿脊髓性进行性肌萎缩症一例[J]. 中华儿科杂志, 1965, 14: 146-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GZYI199902001.htm
    [16] 赵耕源. 慢性近端型脊髓肌萎缩症(7例临床与肌电图报告)[J]. 神经精神疾病杂志, 1979, 5: 88-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJJ197902012.htm
    [17] 王有彬, 何毅, 郭玉璞, 等. 婴儿型脊髓性肌萎缩症(附13例临床分析及1例尸检报告). 临床神经病学杂志, 1989, 2: 218-219. https://www.cnki.com.cn/Article/CJFDTOTAL-LCSJ198904016.htm
    [18] Brzustowicz LM, Lehner T, Castilla LH, et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3[J]. Nature, 1990, 344: 540-541. doi: 10.1038/344540a0
    [19] Melki J, Abdelhak S, Sheth P, et al. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q[J]. Nature, 1990, 344: 767-768. doi: 10.1038/344767a0
    [20] Gilliam TC, Brzustowicz LM, Castilla LH, et al. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy[J]. Nature, 1990, 345: 823-825. doi: 10.1038/345823a0
    [21] Melki J, Sheth P, Abdelhak S, et al. Mapping of acute (type 1) spinal muscular atrophy to chromosome 5q12-q14[J]. Lancet, 1990, 336: 271-273. doi: 10.1016/0140-6736(90)91803-I
    [22] Munsat TL. Workshop report: international SMA collaboration[J]. Neuromuscul Disord, 1991, 1: 81. doi: 10.1016/0960-8966(91)90052-T
    [23] Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterisation of a spinal muscular atrophy-determining gene[J]. Cell, 1995, 80: 155-165. doi: 10.1016/0092-8674(95)90460-3
    [24] Chang JG, Jong YJ, Huang JM, et al. Molecular basis of spinal muscular atrophy in Chinese[J]. Am J Hum Genet, 1995, 57: 1503-1505.
    [25] van der Steege G, Grootscholten P, van der Vlies, et al. PCR-based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy[J]. Lancet, 1995, 345: 985-986. doi: 10.1016/S0140-6736(95)90732-7
    [26] 王蜴, 麻宏伟, 宓真, 等. 一种脊髓性肌萎缩快速简便的基因诊断方法[J]. 中华医学遗传学杂志, 1997, 14: 384-385. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYC706.024.htm
    [27] 丁新生, 姚娟, 陈克连, 等. 脊髓性肌萎缩症的基因诊断[J]. 临床神经病学杂志, 1997, 10: 330-332. https://www.cnki.com.cn/Article/CJFDTOTAL-LCSJ199706003.htm
    [28] Wang CH, Finkel RS, Bertini ES, et al. Consensus statement for standard of care in spinal muscular atrophy[J]. J Child Neurol, 2007, 22: 1027-1049. doi: 10.1177/0883073807305788
    [29] 北京医学会罕见病分会等. 脊髓性肌萎缩症多学科管理专家共识[J]. 中华医学杂志, 2019, 99: 1460-1467. doi: 10.3760/cma.j.issn.0376-2491.2019.19.006
    [30] Hsieh-Li HM, Chang JG, Jong YJ, et al. A mouse model for spinal muscular atrophy[J]. Nat Genet, 2000, 24: 66-70. doi: 10.1038/71709
    [31] Monani UR, Sendtner M, Coovert DD, et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy[J]. Hum Mol Genet, 2000, 9: 333-339. doi: 10.1093/hmg/9.3.333
    [32] Singh NK, Singh NN, Androphy EJ, et al. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron[J]. Mol Cell Biol, 2006, 26: 1333-1346. doi: 10.1128/MCB.26.4.1333-1346.2006
    [33] Hua Y, Vickers TA, Okunola HL, et al. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice[J]. Am J Hum Genet, 2008, 82: 834-848. doi: 10.1016/j.ajhg.2008.01.014
    [34] Hua Y, Sahashi K, Rigo F, et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model[J]. Nature, 2011, 478: 123-126. doi: 10.1038/nature10485
    [35] Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study[J]. Lancet, 2016, 388: 3017-3026. doi: 10.1016/S0140-6736(16)31408-8
    [36] Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy[J]. N Engl J Med, 2017, 377: 1723-1732. doi: 10.1056/NEJMoa1702752
    [37] Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy[J]. N Engl J Med, 2018, 378: 625-635. doi: 10.1056/NEJMoa1710504
    [38] Zhang J, Cui 2, Chen S, et al. Ultrasound-guided nusinersen administration for spinal muscular atrophy patients with severe scoliosis: an observational study[J]. Orphanet J Rare Dis, 2021, 16: 274. doi: 10.1186/s13023-021-01903-4
    [39] Dominguez E, Marais T, Chatauret N, et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice[J]. Hum Mol Genet, 2011, 20: 681-693. doi: 10.1093/hmg/ddq514
    [40] Mendell JR, Al-Zaidy S, Shell R, et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy[J]. N Engl J Med, 2017, 377: 1713-1722. doi: 10.1056/NEJMoa1706198
    [41] Naryshkin NA, Weetall M, Dakka A, et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy[J]. Science, 2014, 345: 688-693. doi: 10.1126/science.1250127
    [42] Palacino J, Swalley SE, Song C, et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice[J]. Nat Chem Biol, 2015, 11: 511-517. doi: 10.1038/nchembio.1837
    [43] Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls[J]. N Engl J Med, 2021, 385: 427-435. doi: 10.1056/NEJMoa2102047
    [44] Lefebvre S, Sarret C. Pathogenesis and therapeutic targets in spinal muscular atrophy (SMA)[J]. Arch Pediatr, 2020, 27: 7S3-7S8. doi: 10.1016/S0929-693X(20)30269-4
    [45] Groen EJN, Talbot K, Gillingwater TH. Advances in therapy for spinal muscular atrophy: promises and challenges[J]. Nat Rev Neurol, 2018, 14: 214-224.
  • 加载中
计量
  • 文章访问数:  546
  • HTML全文浏览量:  154
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-01-06

目录

    /

    返回文章
    返回