留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外用雷帕霉素制剂的应用进展

王森分 刘元香 徐子刚

王森分, 刘元香, 徐子刚. 外用雷帕霉素制剂的应用进展[J]. 罕见病研究, 2023, 2(2): 273-280. doi: 10.12376/j.issn.2097-0501.2023.02.013
引用本文: 王森分, 刘元香, 徐子刚. 外用雷帕霉素制剂的应用进展[J]. 罕见病研究, 2023, 2(2): 273-280. doi: 10.12376/j.issn.2097-0501.2023.02.013
WANG Senfen, LIU Yuanxiang, XU Zigang. Progress in the Treatment of Topical Rapamycin Preparations[J]. Journal of Rare Diseases, 2023, 2(2): 273-280. doi: 10.12376/j.issn.2097-0501.2023.02.013
Citation: WANG Senfen, LIU Yuanxiang, XU Zigang. Progress in the Treatment of Topical Rapamycin Preparations[J]. Journal of Rare Diseases, 2023, 2(2): 273-280. doi: 10.12376/j.issn.2097-0501.2023.02.013

外用雷帕霉素制剂的应用进展

doi: 10.12376/j.issn.2097-0501.2023.02.013
详细信息
    通信作者:

    徐子刚,E-mail:zigangxupek@163.com

  • 中图分类号: R75

Progress in the Treatment of Topical Rapamycin Preparations

More Information
  • 摘要: 雷帕霉素是哺乳动物雷帕霉素靶蛋白(mTOR)受体抑制剂。临床对mTOR信号通路及其对肿瘤发生和血管增殖下游作用的认识进展,拓宽了mTOR抑制剂在许多具有挑战性疾病中的临床应用。口服雷帕霉素用于治疗肾移植、肺淋巴管平滑肌瘤病、结节性硬化症(TSC)等,但系统治疗具有明显的副作用。为了减轻系统使用雷帕霉素的副作用, 局部治疗已经开展。近年来,雷帕霉素外用剂型的临床应用报道逐渐增多,如TSC面部血管纤维瘤、淋巴管畸形、Kaposi样血管内皮瘤、丛状血管瘤等。外用雷帕霉素可在避免系统性不良反应的同时,进行有效的长期治疗,为皮肤科临床医生提供了新的治疗手段。本文探讨雷帕霉素外用制剂的临床应用进展。

     

  • [1] Fogel AL, Hill S, Teng JM. Advances in the therapeutic use of mammalian target of rapamycin (mTOR) inhibitors in dermatology[J]. J Am Acad Dermatol, 2015, 72(5): 879-889. doi: 10.1016/j.jaad.2015.01.014
    [2] Kasap B. Sirolimus in pediatric renal transplantation[J]. Pediatr Transplant, 2011, 15(7): 673-685. doi: 10.1111/j.1399-3046.2011.01575.x
    [3] Battaglioni S, Benjamin D, Walchli M, et al. mTOR substrate phosphorylation in growth control[J]. Cell, 2022, 185(11): 1814-1836. doi: 10.1016/j.cell.2022.04.013
    [4] Wei X, Luo L, Chen J. Roles of mTOR signaling in tissue regeneration[J]. Cells, 2019, 8(9): 1075. doi: 10.3390/cells8091075
    [5] Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170(4): 605-635. doi: 10.1016/j.cell.2017.07.029
    [6] Iriarte FA, Cerda SP, Riera-Mestre A. PIK3CA-related overgrowth spectrum (PROS): new insight in known diseases[J]. Med Clin (Barc), 2021, 157(10): 483-488. doi: 10.1016/j.medcli.2021.03.036
    [7] Méndez-Gómez M, Castro-Mercado E, Peña-Uribe CA, et al. Target of rapamycin signaling plays a role in Arabidopsis growth promotion by Azospirillum brasilense Sp245[J]. Plant Sci, 2020, 293: 110416. doi: 10.1016/j.plantsci.2020.110416
    [8] Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamy-cin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor[J]. Nat Med, 2002, 8(2): 128-135. doi: 10.1038/nm0202-128
    [9] Haemel AK, O'Brian AL, Teng JM. Topical rapamycin: a novel approach to facial angiofibromas in tuberous sclerosis[J]. Arch Dermatol, 2010, 146(7): 715-718.
    [10] Li S, Takeuchi F, Wang JA, et al. Mesenchymal-epithelial interactions involving epiregulin in tuberous sclerosis complex hamartomas[J]. Proc Natl Acad Sci USA, 2008, 105(9): 3539-3544. doi: 10.1073/pnas.0712397105
    [11] Islam MP. Tuberous sclerosis complex[J]. Semin Pediatr Neurol, 2021, 37: 100875. doi: 10.1016/j.spen.2021.100875
    [12] Schwartz RA, Fernández G, Kotulska K, et al. Tuberous sclerosis complex: advances in diagnosis, genetics, and management[J]. J Am Acad Dermatol, 2007, 57(2): 189-202. doi: 10.1016/j.jaad.2007.05.004
    [13] Luo C, Ye WR, Shi W, et al. Perfect match: mTOR inhibitors and tuberous sclerosis complex[J]. Orphanet J Rare Dis, 2022, 17(1): 106. doi: 10.1186/s13023-022-02266-0
    [14] 王森分, 王旭, 魏京海, 等. 外用西罗莫司治疗儿童结节性硬化症血管纤维瘤的疗效及安全性研究[J]. 中华皮肤科杂志, 2016, 49(7): 469-473. doi: 10.3760/cma.j.issn.0412-4030.2016.07.005
    [15] Wang S, Liu Y, Wei J, et al. Tuberous sclerosis complex in 29 children: clinical and genetic analysis and facial angiofibroma responses to topical sirolimus[J]. Pediatr Dermatol, 2017, 34(5): 572-577. doi: 10.1111/pde.13204
    [16] Koenig MK, Bell CS, Hebert AA, et al. Efficacy and safety of topical rapamycin in patients with facial angiofibromas secondary to tuberous sclerosis complex: the treatment randomized clinical trial[J]. JAMA Dermatol, 2018, 154(7): 773-780. doi: 10.1001/jamadermatol.2018.0464
    [17] Lin YT, Yu CL, Tu YK, et al. Efficacy and safety of topical mechanistic target of rapamycin inhibitors for facial angiofibromas in patients with tuberous sclerosis complex: a systematic review and network meta-analysis[J]. Biomedicines, 2022, 10(4): 826. doi: 10.3390/biomedicines10040826
    [18] Malissen N, Vergely L, Simon M, et al. Long-term treatment of cutaneous manifestations of tuberous sclerosis complex with topical 1% sirolimus cream: A prospective study of 25 patients[J]. J Am Acad Dermatol, 2017, 77(3): 464-472. doi: 10.1016/j.jaad.2017.04.005
    [19] Koenig MK, Hebert AA, Roberson J, et al. Topical rapamycin therapy to alleviate the cutaneous manifestations of tuberous sclerosis complex: a double-blind, randomized, controlled trial to evaluate the safety and efficacy of topically applied rapamycin[J]. Drugs R D, 2012, 12(3): 121-126. doi: 10.2165/11634580-000000000-00000
    [20] Chen PL, Hong JB, Shen LJ, et al. The efficacy and safety of topical rapamycin-calcitriol for facial angiofibromas in patients with tuberous sclerosis complex: a prospective, double-blind, randomized clinical trial[J]. Br J Dermatol, 2020, 183(4): 655-663. doi: 10.1111/bjd.18949
    [21] Teng J, Hammill A, Martini J, et al. Sirolimus in the treatment of microcystic lymphatic malformations: a systematic review[J]. Lymphat Res Biol, 2022. doi: 10.1089/lrb.2021.0103.
    [22] Ozeki M, Asada R, Saito AM, et al. Efficacy and safety of sirolimus treatment for intractable lymphatic anomalies: a study protocol for an open-label, single-arm, multicenter, prospective study (SILA)[J]. Regen Ther, 2019, 10: 84-91. doi: 10.1016/j.reth.2018.12.001
    [23] Hammer J, Seront E, Duez S, et al. Sirolimus is efficacious in treatment for extensive and/or complex slow-flow vascular malformations: a monocentric prospective phase Ⅱ study[J]. Orphanet J Rare Dis, 2018, 13(1): 191. doi: 10.1186/s13023-018-0934-z
    [24] Çaliᶊkan E, Altunel CT, Ozkan CK, et al. A case of microcystic lymphatic malformation successfully treated with topical sirolimus[J]. Dermatol Ther, 2018, 31(5): e12673.
    [25] García-Montero P, Del BJ, Baselga-Torres E, et al. Use of topical rapamycin in the treatment of superficial lymphatic malformations[J]. J Am Acad Dermatol, 2019, 80(2): 508-515. doi: 10.1016/j.jaad.2018.09.050
    [26] Le Sage S, David M, Dubois J, et al. Efficacy and absorption of topical sirolimus for the treatment of vascular anomalies in children: a case series[J]. Pediatr Dermatol, 2018, 35(4): 472-477. doi: 10.1111/pde.13547
    [27] Arai E, Kuramochi A, Tsuchida T, et al. Usefulness of D2-40 immunohistochemistry for differentiation between kaposiform hemangioendothelioma and tufted angioma[J]. J Cutan Pathol, 2006, 33(7): 492-497. doi: 10.1111/j.1600-0560.2006.00461.x
    [28] Chu CY, Hsiao CH, Chiu HC. Transformation between Kaposiform hemangioendothelioma and tufted angioma[J]. Dermatology, 2003, 206(4): 334-337. doi: 10.1159/000069947
    [29] Liu YX, Zhang J, Nie XL, et al. The effect of topical sirolimus on superficial Kaposiform haemangioendothelioma[J]. Australas J Dermatol, 2021, 62(2): e329-e331.
    [30] Burleigh A, Kanigsberg N, Lam JM. Topical rapamycin (sirolimus) for the treatment of uncomplicated tufted angiomas in two children and review of the literature[J]. Pediatr Dermatol, 2018, 35(5): e286-e290. doi: 10.1111/pde.13596
    [31] Zhang X, Yang K, Chen S, et al. Tacrolimus ointment for the treatment of superficial kaposiform hemangioendothelioma and tufted angioma[J]. J Dermatol, 2019, 46(10): 898-901. doi: 10.1111/1346-8138.15031
    [32] Shirley MD, Tang H, Gallione CJ, et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ[J]. N Engl J Med, 2013, 368(21): 1971-1979. doi: 10.1056/NEJMoa1213507
    [33] Tan W, Jia W, Sun V, et al. Topical rapamycin suppresses the angiogenesis pathways induced by pulsed dye laser: molecular mechanisms of inhibition of regeneration and revascularization of photocoagulated cutaneous blood vessels[J]. Lasers Surg Med, 2012, 44(10): 796-804. doi: 10.1002/lsm.22101
    [34] Jia W, Sun V, Tran N, et al. Long-term blood vessel removal with combined laser and topical rapamycin antiangiogenic therapy: implications for effective port wine stain treatment[J]. Lasers Surg Med, 2010, 42(2): 105-112. doi: 10.1002/lsm.20890
    [35] Loewe R, Oble DA, Valero T, et al. Stem cell marker upregulation in normal cutaneous vessels following pulsed-dye laser exposure and its abrogation by concurrent rapamycin administration: implications for treatment of port-wine stain birthmarks[J]. J Cutan Pathol, 2010, 37 Suppl 1(Suppl 1): 76-82.
    [36] Nelson JS, Jia W, Phung TL, et al. Observations on enhanced port wine stain blanching induced by combined pulsed dye laser and rapamycin administration[J]. Lasers Surg Med, 2011, 43(10): 939-942. doi: 10.1002/lsm.21141
    [37] Marqués L, Nunez-Cordoba M, Aguado L, et al. Topical rapamycin combined with pulsed dye laser in the treatment of capillary vascular malformations in Sturge-Weber syndrome: phase Ⅱ, randomized, double-blind, intraindividual placebo-controlled clinical trial[J]. J Am Acad Dermatol, 2015, 72(1): 151-158. doi: 10.1016/j.jaad.2014.10.011
    [38] Greveling K, Prens EP, van Doorn MB. Treatment of port wine stains using Pulsed Dye Laser, Erbium YAG Laser, and topical rapamycin (sirolimus)-a randomized controlled trial[J]. Lasers Surg Med, 2017, 49(1): 104-109. doi: 10.1002/lsm.22548
    [39] Fallahi M, Hallaji Z, Tavakolpour S, et al. Evaluating the efficacy and safety of topical sirolimus 0.2% cream as adjuvant therapy with pulsed dye laser for the treatment of port wine stain: a randomized, double-blind, placebo-controlled trial[J]. J Cosmet Dermatol, 2021, 20(8): 2498-2506. doi: 10.1111/jocd.13867
    [40] Evans DG, Howard E, Giblin C, et al. Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service[J]. Am J Med Genet A, 2010, 152A(2): 327-332. doi: 10.1002/ajmg.a.33139
    [41] DeBella K, Szudek J, Friedman JM. Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children[J]. Pediatrics, 2000, 105(3 Pt 1): 608-614.
    [42] Hegedus B, Banerjee D, Yeh TH, et al. Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma[J]. Cancer Res, 2008, 68(5): 1520-1528. doi: 10.1158/0008-5472.CAN-07-5916
    [43] Hua C, Zehou O, Ducassou S, et al. Sirolimus improves pain in NF1 patients with severe plexiform neurofibromas[J]. Pediatrics, 2014, 133(6): e1792-e1797. doi: 10.1542/peds.2013-1224
    [44] Malhotra N, Levy J, Fiorillo L. Topical sirolimus as an effective treatment for a deep neurofibroma in a patient with neurofibromatosis type Ⅰ[J]. Pediatr Dermatol, 2019, 36(3): 360-361. doi: 10.1111/pde.13782
    [45] Wataya-Kaneda M, Watanabe Y, Nakamura A, et al. Pilot study for the treatment of cutaneous neurofibromas in neurofibromatosis type 1 patients using topical sirolimus gel[J]. J Am Acad Dermatol, 2023, 88(4): 877-880. doi: 10.1016/j.jaad.2022.08.066
    [46] Nickerson ML, Warren MB, Toro JR, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome[J]. Cancer Cell, 2002, 2(2): 157-164. doi: 10.1016/S1535-6108(02)00104-6
    [47] Baba M, Hong SB, Sharma N, et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling[J]. Proc Natl Acad Sci USA, 2006, 103(42): 15552-15557. doi: 10.1073/pnas.0603781103
    [48] Baba M, Furihata M, Hong SB, et al. Kidney-targeted Birt-Hogg-Dube gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys[J]. J Natl Cancer Inst, 2008, 100(2): 140-154. doi: 10.1093/jnci/djm288
    [49] Hasumi Y, Baba M, Ajima R, et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2[J]. Proc Natl Acad Sci USA, 2009, 106(44): 18722-18727. doi: 10.1073/pnas.0908853106
    [50] Birt AR, Hogg GR, Dube WJ. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons[J]. Arch Dermatol, 1977, 113(12): 1674-1677. doi: 10.1001/archderm.1977.01640120042005
    [51] Toro R, Pautler SE, Stewart L, et al. Lung cysts, spontaneous pneumothorax, and genetic associations in 89 families with Birt-Hogg-Dube syndrome[J]. Am J Respir Crit Care Med, 2007, 175(10): 1044-1053. doi: 10.1164/rccm.200610-1483OC
    [52] Pavlovich CP, Walther MM, Eyler RA, et al. Renal tumors in the Birt-Hogg-Dubé syndrome[J]. Am J Surg Pathol, 2002, 26(12): 1542-1552. doi: 10.1097/00000478-200212000-00002
    [53] Kim D, Wysong A, Teng J M, et al. Laser-assisted delivery of topical rapamycin: mTOR inhibition for Birt-Hogg-Dube syndrome[J]. Dermatol Surg, 2019, 45(12): 1713-1715. doi: 10.1097/DSS.0000000000001778
    [54] Gijezen LM, Vernooij M, Martens H, et al. Topical rapamycin as a treatment for fibrofolliculomas in Birt-Hogg-Dube syndrome: a double-blind placebo-controlled randomized split-face trial[J]. PLoS One, 2014, 9(6): e99071. doi: 10.1371/journal.pone.0099071
    [55] Brinkhuizen T, Weijzen CA, Eben J, et al. Immunohistochemical analysis of the mechanistic target of rapamycin and hypoxia signalling pathways in basal cell carcinoma and trichoepithelioma[J]. PLoS One, 2014, 9(9): e106427. doi: 10.1371/journal.pone.0106427
    [56] Dreyfus I, Onnis G, Tournier E, et al. Effect of topical rapamycin 1% on multiple trichoepitheliomas[J]. Acta Derm Venereol, 2019, 99(4): 454-455. doi: 10.2340/00015555-3116
    [57] Tu JH, Teng JM. Use of topical sirolimus in the management of multiple familial trichoepitheliomas[J]. Dermatol Ther, 2017, 30(2). doi: 10.1111/dth.12458.
    [58] Shimizu A, Toyoda A, Motegi SI, et al. First Japanese case of trichoepithelioma papulosum multiplex successfully treated with sirolimus gel[J]. J Dermatol, 2020, 47(5): e197-e198.
    [59] Groesser L, Herschberger E, Ruetten A, et al. Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome[J]. Nat Genet, 2012, 44(7): 783-787. doi: 10.1038/ng.2316
    [60] Brandling-Bennett HA, Morel KD. Epidermal nevi[J]. Pediatr Clin North Am, 2010, 57(5): 1177-1198. doi: 10.1016/j.pcl.2010.07.004
    [61] Hafner C, Lopez-Knowles E, Luis NM, et al. Onco-genic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern[J]. Proc Natl Acad Sci USA, 2007, 104(33): 13450-13454. doi: 10.1073/pnas.0705218104
    [62] Hafner C, van Oers JM, Vogt T, et al. Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi[J]. J Clin Invest, 2006, 116(8): 2201-2207. doi: 10.1172/JCI28163
    [63] Hafner C, Toll A, Gantner S, et al. Keratinocytic epidermal nevi are associated with mosaic RAS mutations[J]. J Med Genet, 2012, 49(4): 249-253. doi: 10.1136/jmedgenet-2011-100637
    [64] Zhou AG, Antaya RJ. Topical sirolimus therapy for nevus sebaceus and epidermal nevus: A case series[J]. J Am Acad Dermatol, 2022, 87(2): 407-409. doi: 10.1016/j.jaad.2021.08.029
    [65] Dodds M, Maguiness S. Topical sirolimus therapy for epidermal nevus with features of acanthosis nigricans[J]. Pediatr Dermatol, 2019, 36(4): 554-555.
    [66] Patel N, Padhiyar J, Patel A, et al. Successful amelioration of inflammatory linear verrucous epidermal nevus with topical sirolimus[J]. Ann Dermatol, 2020, 32(6): 534-536. doi: 10.5021/ad.2020.32.6.534
  • 加载中
计量
  • 文章访问数:  5
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 录用日期:  2023-02-05
  • 网络出版日期:  2023-05-05

目录

    /

    返回文章
    返回