留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能助力皮肤罕见病诊疗

王煜坤 刘洁

王煜坤, 刘洁. 人工智能助力皮肤罕见病诊疗[J]. 罕见病研究, 2023, 2(2): 157-163. doi: 10.12376/j.issn.2097-0501.2023.02.003
引用本文: 王煜坤, 刘洁. 人工智能助力皮肤罕见病诊疗[J]. 罕见病研究, 2023, 2(2): 157-163. doi: 10.12376/j.issn.2097-0501.2023.02.003
WANG Yukun, LIU Jie. Artificial Intelligence Applications in Rare Skin Diseases[J]. Journal of Rare Diseases, 2023, 2(2): 157-163. doi: 10.12376/j.issn.2097-0501.2023.02.003
Citation: WANG Yukun, LIU Jie. Artificial Intelligence Applications in Rare Skin Diseases[J]. Journal of Rare Diseases, 2023, 2(2): 157-163. doi: 10.12376/j.issn.2097-0501.2023.02.003

人工智能助力皮肤罕见病诊疗

doi: 10.12376/j.issn.2097-0501.2023.02.003
基金项目: 

中央高水平医院临床科研业务费 2022-PUMCH-B-092

国家自然科学基金 82173449

北京市自然科学基金 7232114

中国医学科学院医学与健康科技创新工程 2022-I2M-C&T-A-007

详细信息
    通信作者:

    刘洁,E-mail: Liujie04672@pumch.cn

  • 中图分类号: R-1;R44;R75

Artificial Intelligence Applications in Rare Skin Diseases

Funding: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-092

National Natural Science Foundation 82173449

Beijing Natural Science Foundation 7232114

Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences 2022-I2M-C&T-A-007

More Information
  • 摘要: 在临床实践中,皮肤罕见病的早期诊断、准确评估和有效治疗均存在一定困难。随着大数据时代的到来,图像数据、多组学数据及电子病历等生物医疗数据呈指数级增长,以机器学习为代表的人工智能(AI)在处理大量复杂信息中极具优势,已有研究将AI引入到皮肤罕见病的辅助诊疗中。本文分别对基于图像数据、多组学数据和文本数据的AI在辅助皮肤罕见病诊疗及AI辅助皮肤罕见病药物探索等方面的研究进行了简述、探讨和展望,以期提高皮肤科医师对该领域的认识并积极推动皮肤罕见病人工智能研究发展。

     

  • [1] 王泽钊, 宋晓琳, 张金子, 等. 国外罕见病治疗保障体系对我国的伦理启示[J]. 中国医学伦理学, 2022, 35(10): 1088-1093. doi: 10.12026/j.issn.1001-8565.2022.10.07
    [2] 朱以诚, 张抒扬. 我国罕见病诊疗和研究平台建立现状和回顾[J]. 罕见病研究, 2022, 1(2): 93-96. doi: 10.12376/j.issn.2097-0501.2022.02.001
    [3] 张学军. 罕见性遗传性皮肤病的研究现状及展望[J]. 皮肤科学通报, 2020, 37(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXW202001001.htm
    [4] Rundle CW, Hollingsworth P, Dellavalle RP. Artificial intelligence in dermatology[J]. Clin Dermatol, 2021, 39(4): 657-666. doi: 10.1016/j.clindermatol.2021.03.011
    [5] 王慧, 戚倩倩, 李雪, 等. 皮肤肿瘤图像自动分类的研究进展[J]. 计算机工程与应用, 2022, 58(16): 31-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202216002.htm
    [6] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. doi: 10.1038/nature21056
    [7] Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists[J]. Ann Oncol, 2018, 29(8): 1836-1842. doi: 10.1093/annonc/mdy166
    [8] Marchetti MA, Liopyris K, Dusza SW, et al. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: results of the international skin imaging collaboration 2017[J]. J Am Acad Dermatol, 2020, 82(3): 622-627. doi: 10.1016/j.jaad.2019.07.016
    [9] Lee S, Chu YS, Yoo SK, et al. Augmented decision-making for acral lentiginous melanoma detection using deep convolutional neural networks[J]. J Eur Acad Dermatol Venereol, 2020, 34(8): 1842-1850. doi: 10.1111/jdv.16185
    [10] Brinker TJ, Schmitt M, Krieghoff-Henning EI, et al. Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists[J]. J Am Acad Dermatol, 2022, 86(3): 640-642. doi: 10.1016/j.jaad.2021.02.009
    [11] Lodha S, Saggar S, Celebi JT, et al. Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting[J]. J Cutan Pathol, 2008, 35(4): 349-352. doi: 10.1111/j.1600-0560.2007.00970.x
    [12] Comes MC, Fucci L, Mele F, et al. A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients[J]. Sci Rep, 2022, 12(1): 20366. doi: 10.1038/s41598-022-24315-1
    [13] 刘兆睿, 张漪澜, 谢凤英, 等. 基于皮肤镜图像智能分析的早期蕈样肉芽肿诊断模型构建[J]. 协和医学杂志, 2021, 12(5): 689-697. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202105014.htm
    [14] Wu H, Chen H, Wang X, et al. Development and validation of an artificial intelligence-based image classification method for pathological diagnosis in patients with extramammary Paget's disease[J]. Front Oncol, 2021, 11: 810909.
    [15] Aijaz SF, Khan SJ, Azim F, et al. Deep learning application for effective classification of different types of psoriasis[J]. J Healthc Eng, 2022, 2022: 7541583.
    [16] 北京协和医院. 中国首个罕见皮肤病人工智能辅助识别工具上线[J]. 首都食品与医药, 2022, 29(16): 8.
    [17] Akay M, Du Y, Sershen CL, et al. Deep learning classification of systemic sclerosis skin using the MobileNetV2 model[J]. IEEE Open J Eng Med Biol, 2021, 2: 104-110. doi: 10.1109/OJEMB.2021.3066097
    [18] Shi C, Meijer JM, Azzopardi G, et al. Use of convolutional neural networks for the detection of u-serrated patterns in direct immunofluorescence images to facilitate the diagnosis of epidermolysis bullosa acquisita[J]. Am J Pathol, 2021, 191(9): 1520-1525. doi: 10.1016/j.ajpath.2021.05.024
    [19] 刘杏, 杨寅, 葛一平, 等. 人工智能在临床基因组学中的应用进展[J]. 中国医学科学院学报, 2021, 43(6): 950-955. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYKX202106018.htm
    [20] Alharbi WS, Rashid M. A review of deep learning applications in human genomics using next-generation sequencing data[J]. Hum Genomics, 2022, 16(1): 26.
    [21] Poplin R, Chang PC, Alexander D, et al. A universal SNP and small-indel variant caller using deep neural networks[J]. Nat Biotechnol, 2018, 36(10): 983-987.
    [22] Kumaran M, Subramanian U, Devarajan B. Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data[J]. BMC Bioinformatics, 2019, 20(1): 342.
    [23] Luo R, Sedlazeck FJ, Lam TW, et al. A multi-task convolutional deep neural network for variant calling in single molecule sequencing[J]. Nat Commun, 2019, 10(1): 998.
    [24] Boudellioua I, Kulmanov M, Schofield PN, et al. Deep PVP: phenotype-based prioritization of causative variants using deep learning[J]. BMC Bioinformatics, 2019, 20(1): 65.
    [25] Arloth J, Eraslan G, Andlauer TFM, et al. DeepWAS: multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning[J]. PLoS Comput Biol, 2020, 16(2): e1007616.
    [26] Jaganathan K, Kyriazopoulou PS, Mcrae JF, et al. Predict-ing splicing from primary sequence with deep learning[J]. Cell, 2019, 176(3): 535-548.
    [27] Agarwal V, Shendure J. Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks[J]. Cell Rep, 2020, 31(7): 107663.
    [28] Angermueller C, Lee HJ, Reik W, et al. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning[J]. Genome Biol, 2017, 18(1): 67.
    [29] Yin Q, Wu M, Liu Q, et al. DeepHistone: a deep learning approach to predicting histone modifications[J]. BMC Genomics, 2019, 20(Suppl 2): 193.
    [30] He J, Jia Y. Application of omics technologies in dermatological research and skin management[J]. J Cosmet Dermatol, 2022, 21(2): 451-460.
    [31] Zhang H, Lee CAA, Li Z, et al. A multitask clustering approach for single-cell RNA-seq analysis in recessive dystrophic epidermolysis bullosa[J]. PLoS Comput Biol, 2018, 14(4): e1006053.
    [32] Borcherding N, Voigt AP, Liu V, et al. Single-cell profiling of cutaneous T-cell lymphoma reveals underlying heteroge-neity associated with disease progression[J]. Clin Cancer Res, 2019, 25(10): 2996-3005.
    [33] Martínez BA, Shrotri S, Kingsmore KM, et al. Machine learning reveals distinct gene signature profiles in lesional and nonlesional regions of inflammatory skin diseases[J]. Sci Adv, 2022, 8(17): eabn4776.
    [34] Escudié JB, Jannot AS, Zapletal E, et al. Reviewing 741 patients records in two hours with FASTVISU[J]. AMIA Annu Symp Proc, 2015, 2015: 553-559.
    [35] Jamian L, Wheless L, Crofford LJ, et al. Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in the electronic health record[J]. Arthritis Res Ther, 2019, 21(1): 305.
    [36] Li Y, Liang J, Xu X, et al. Clinicopathological features of fibrosarcomatous dermatofibrosarcoma protuberans and the construction of a back-propagation neural network recognition model[J]. Orphanet J Rare Dis, 2021, 16(1): 48.
    [37] Cheraghlou S, Sadda P, Agogo GO, et al. A machine-learning modified CART algorithm informs Merkel cell carcinoma prognosis[J]. Australas J Dermatol, 2021, 62(3): 323-330.
    [38] Álvarez-Machancoses Ó, Fernández-Martínez JL. Using artificial intelligence methods to speed up drug discovery[J]. Expert Opin Drug Discov, 2019, 14(8): 769-777.
    [39] Challa AP, Zaleski NM, Jerome RN, et al. Human and machine intelligence together drive drug repurposing in rare diseases[J]. Front Genet, 2021, 12: 707836.
    [40] Lee YS, Krishnan A, Oughtred R, et al. A computational framework for genome-wide characterization of the human disease landscape[J]. Cell Syst, 2019, 8(2): 152-162. e6.
    [41] Liu M, Yang F, Xu Y. Identification of potential drug therapy for dermatofibrosarcoma protuberans with bioinformatics and deep learning technology[J]. Curr Comput Aided Drug Des, 2022, 18(5): 393-405.
    [42] Liu M, Xu Y. Gene Identification and potential drug therapy for drug-resistant melanoma with bioinformatics and deep learning technology[J]. Dis Markers, 2022, 2022: 2461055.
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  14
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-27
  • 录用日期:  2023-02-02
  • 网络出版日期:  2023-05-05

目录

    /

    返回文章
    返回