[1] |
王泽钊, 宋晓琳, 张金子, 等. 国外罕见病治疗保障体系对我国的伦理启示[J]. 中国医学伦理学, 2022, 35(10): 1088-1093. doi: 10.12026/j.issn.1001-8565.2022.10.07
|
[2] |
朱以诚, 张抒扬. 我国罕见病诊疗和研究平台建立现状和回顾[J]. 罕见病研究, 2022, 1(2): 93-96. doi: 10.12376/j.issn.2097-0501.2022.02.001
|
[3] |
张学军. 罕见性遗传性皮肤病的研究现状及展望[J]. 皮肤科学通报, 2020, 37(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXW202001001.htm
|
[4] |
Rundle CW, Hollingsworth P, Dellavalle RP. Artificial intelligence in dermatology[J]. Clin Dermatol, 2021, 39(4): 657-666. doi: 10.1016/j.clindermatol.2021.03.011
|
[5] |
王慧, 戚倩倩, 李雪, 等. 皮肤肿瘤图像自动分类的研究进展[J]. 计算机工程与应用, 2022, 58(16): 31-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202216002.htm
|
[6] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. doi: 10.1038/nature21056
|
[7] |
Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists[J]. Ann Oncol, 2018, 29(8): 1836-1842. doi: 10.1093/annonc/mdy166
|
[8] |
Marchetti MA, Liopyris K, Dusza SW, et al. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: results of the international skin imaging collaboration 2017[J]. J Am Acad Dermatol, 2020, 82(3): 622-627. doi: 10.1016/j.jaad.2019.07.016
|
[9] |
Lee S, Chu YS, Yoo SK, et al. Augmented decision-making for acral lentiginous melanoma detection using deep convolutional neural networks[J]. J Eur Acad Dermatol Venereol, 2020, 34(8): 1842-1850. doi: 10.1111/jdv.16185
|
[10] |
Brinker TJ, Schmitt M, Krieghoff-Henning EI, et al. Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists[J]. J Am Acad Dermatol, 2022, 86(3): 640-642. doi: 10.1016/j.jaad.2021.02.009
|
[11] |
Lodha S, Saggar S, Celebi JT, et al. Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting[J]. J Cutan Pathol, 2008, 35(4): 349-352. doi: 10.1111/j.1600-0560.2007.00970.x
|
[12] |
Comes MC, Fucci L, Mele F, et al. A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients[J]. Sci Rep, 2022, 12(1): 20366. doi: 10.1038/s41598-022-24315-1
|
[13] |
刘兆睿, 张漪澜, 谢凤英, 等. 基于皮肤镜图像智能分析的早期蕈样肉芽肿诊断模型构建[J]. 协和医学杂志, 2021, 12(5): 689-697. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202105014.htm
|
[14] |
Wu H, Chen H, Wang X, et al. Development and validation of an artificial intelligence-based image classification method for pathological diagnosis in patients with extramammary Paget's disease[J]. Front Oncol, 2021, 11: 810909.
|
[15] |
Aijaz SF, Khan SJ, Azim F, et al. Deep learning application for effective classification of different types of psoriasis[J]. J Healthc Eng, 2022, 2022: 7541583.
|
[16] |
北京协和医院. 中国首个罕见皮肤病人工智能辅助识别工具上线[J]. 首都食品与医药, 2022, 29(16): 8.
|
[17] |
Akay M, Du Y, Sershen CL, et al. Deep learning classification of systemic sclerosis skin using the MobileNetV2 model[J]. IEEE Open J Eng Med Biol, 2021, 2: 104-110. doi: 10.1109/OJEMB.2021.3066097
|
[18] |
Shi C, Meijer JM, Azzopardi G, et al. Use of convolutional neural networks for the detection of u-serrated patterns in direct immunofluorescence images to facilitate the diagnosis of epidermolysis bullosa acquisita[J]. Am J Pathol, 2021, 191(9): 1520-1525. doi: 10.1016/j.ajpath.2021.05.024
|
[19] |
刘杏, 杨寅, 葛一平, 等. 人工智能在临床基因组学中的应用进展[J]. 中国医学科学院学报, 2021, 43(6): 950-955. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYKX202106018.htm
|
[20] |
Alharbi WS, Rashid M. A review of deep learning applications in human genomics using next-generation sequencing data[J]. Hum Genomics, 2022, 16(1): 26.
|
[21] |
Poplin R, Chang PC, Alexander D, et al. A universal SNP and small-indel variant caller using deep neural networks[J]. Nat Biotechnol, 2018, 36(10): 983-987.
|
[22] |
Kumaran M, Subramanian U, Devarajan B. Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data[J]. BMC Bioinformatics, 2019, 20(1): 342.
|
[23] |
Luo R, Sedlazeck FJ, Lam TW, et al. A multi-task convolutional deep neural network for variant calling in single molecule sequencing[J]. Nat Commun, 2019, 10(1): 998.
|
[24] |
Boudellioua I, Kulmanov M, Schofield PN, et al. Deep PVP: phenotype-based prioritization of causative variants using deep learning[J]. BMC Bioinformatics, 2019, 20(1): 65.
|
[25] |
Arloth J, Eraslan G, Andlauer TFM, et al. DeepWAS: multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning[J]. PLoS Comput Biol, 2020, 16(2): e1007616.
|
[26] |
Jaganathan K, Kyriazopoulou PS, Mcrae JF, et al. Predict-ing splicing from primary sequence with deep learning[J]. Cell, 2019, 176(3): 535-548.
|
[27] |
Agarwal V, Shendure J. Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks[J]. Cell Rep, 2020, 31(7): 107663.
|
[28] |
Angermueller C, Lee HJ, Reik W, et al. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning[J]. Genome Biol, 2017, 18(1): 67.
|
[29] |
Yin Q, Wu M, Liu Q, et al. DeepHistone: a deep learning approach to predicting histone modifications[J]. BMC Genomics, 2019, 20(Suppl 2): 193.
|
[30] |
He J, Jia Y. Application of omics technologies in dermatological research and skin management[J]. J Cosmet Dermatol, 2022, 21(2): 451-460.
|
[31] |
Zhang H, Lee CAA, Li Z, et al. A multitask clustering approach for single-cell RNA-seq analysis in recessive dystrophic epidermolysis bullosa[J]. PLoS Comput Biol, 2018, 14(4): e1006053.
|
[32] |
Borcherding N, Voigt AP, Liu V, et al. Single-cell profiling of cutaneous T-cell lymphoma reveals underlying heteroge-neity associated with disease progression[J]. Clin Cancer Res, 2019, 25(10): 2996-3005.
|
[33] |
Martínez BA, Shrotri S, Kingsmore KM, et al. Machine learning reveals distinct gene signature profiles in lesional and nonlesional regions of inflammatory skin diseases[J]. Sci Adv, 2022, 8(17): eabn4776.
|
[34] |
Escudié JB, Jannot AS, Zapletal E, et al. Reviewing 741 patients records in two hours with FASTVISU[J]. AMIA Annu Symp Proc, 2015, 2015: 553-559.
|
[35] |
Jamian L, Wheless L, Crofford LJ, et al. Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in the electronic health record[J]. Arthritis Res Ther, 2019, 21(1): 305.
|
[36] |
Li Y, Liang J, Xu X, et al. Clinicopathological features of fibrosarcomatous dermatofibrosarcoma protuberans and the construction of a back-propagation neural network recognition model[J]. Orphanet J Rare Dis, 2021, 16(1): 48.
|
[37] |
Cheraghlou S, Sadda P, Agogo GO, et al. A machine-learning modified CART algorithm informs Merkel cell carcinoma prognosis[J]. Australas J Dermatol, 2021, 62(3): 323-330.
|
[38] |
Álvarez-Machancoses Ó, Fernández-Martínez JL. Using artificial intelligence methods to speed up drug discovery[J]. Expert Opin Drug Discov, 2019, 14(8): 769-777.
|
[39] |
Challa AP, Zaleski NM, Jerome RN, et al. Human and machine intelligence together drive drug repurposing in rare diseases[J]. Front Genet, 2021, 12: 707836.
|
[40] |
Lee YS, Krishnan A, Oughtred R, et al. A computational framework for genome-wide characterization of the human disease landscape[J]. Cell Syst, 2019, 8(2): 152-162. e6.
|
[41] |
Liu M, Yang F, Xu Y. Identification of potential drug therapy for dermatofibrosarcoma protuberans with bioinformatics and deep learning technology[J]. Curr Comput Aided Drug Des, 2022, 18(5): 393-405.
|
[42] |
Liu M, Xu Y. Gene Identification and potential drug therapy for drug-resistant melanoma with bioinformatics and deep learning technology[J]. Dis Markers, 2022, 2022: 2461055.
|